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a b s t r a c t 

Various scientific communities, mainly in concrete and polymer materials fields, have extended the defi- 

nition of the Poisson’s ratio to linear viscoelasticity. Depending on the authors, the viscoelastic Poisson’s 

ratios can be increasing, decreasing or non-monotonic functions of time. Going back to the classic inte- 

gral formulation of the linear viscoelastic behaviour, creep and relaxation Poisson’s ratios are rederived as 

functions of bulk and shear relaxation or compliance functions. Both non ageing and ageing behaviours 

are considered. A literature survey on the thermodynamic restrictions on the viscoelastic characteristics 

shows that the ageing case has been much less studied than the non ageing case. Still, some examples, 

both theoretical, including in the ageing case, and practical, regarding concrete, are provided to highlight 

that any evolution of the viscoelastic Poisson’s ratios is possible: increasing, decreasing and even non 

monotonous. 

© 2017 Elsevier Ltd. All rights reserved. 
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1. Introduction 

The question of the multiaxial behaviour of concrete has been

a matter of study at EDF since the works of Granger (1995) who

highlighted the need of performing multiaxial tests in order to

properly model the biaxial creep occurring in concrete contain-

ment buildings of nuclear power plants. This need has led to start-

ing a broad experimental program on multiaxial creep in 2004 at

EDF CEIDRE, in France. These tests are described in Charpin et al.

(2015) ; Galenne et al. (2013) , Charpin et al. ( To be submitted ) . The

overall topic of predicting the delayed behaviour still motivates

works on the creep Poisson’s ratio as the present work performed

at EDF R&D and also outside under EDF funding ( Aili et al., 2015b,

2015a ), through collaborations ( Torrenti et al., 2014 ) or indepen-

dently ( Hilaire, 2014 ). As a matter of fact, the topic of the creep

Poisson’s ratio has led to a lot of studies, but their comparison is

sometimes difficult due to different definitions used for the var-

ious viscoelastic Poisson’s ratio (which was already the motiva-

tion of works on viscoelastic Poisson’s ratios such as Hilton and Yi

(1998) ). Hence, the present article aims at helping to share knowl-

edge between the concrete science community and the mechan-

ics community, in order to improve the way the multiaxial be-

haviour of concrete is studied. To introduce the need for such a

work, a historical perspective on studies about the multiaxial be-
∗ Corresponding author. 
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aviour of concrete and linear viscoelasticity are proposed succes-

ively. Throughout this article, the terms creep Poisson’s ratio and

elaxation Poisson’s ratio will be used extensively and replaced by

PR and RPR. 

Apart from the multiaxial nature of concrete creep, its ageing

iscoelastic behaviour is also modeled at EDF R&D. The notations

hosen in the present paper to detail the equations of viscoelas-

icity are vastly inspired of these recent works ( Sanahuja, 2013;

anahuja and Huang, 2016 ). 

To further illustrate how the topic of the description of the

ultiaxial behaviour of concrete through the use of CPRs has

een dealt with in the concrete science community, a chronolog-

cal presentation is used in order to give a historical perspective.

he present review of the use of the viscoelastic Poisson’s ratio

tarts with Gopalakrishnan work in 1968. Prior to that a number

f works were done on multiaxial creep of concrete, of which a

eview can be found in Gopalakrishnan’s thesis ( Gopalakrishnan,

968 ). However in this review, little detail is given about the for-

ula used to compute the viscoelastic Poisson’s ratio. Therefore

hese works are not dealt with in detail and the reader is referred

o Gopalakrishnan’s thesis. 

Gopalakrishnan et al. (1969) ; Gopalakrishnan (1968) have un-

ergone a broad study of multiaxial creep of concrete. In their

969 article, CPRs are computed using data from multiaxial ba-

ic creep tests (in concrete science, the terms basic and autoge-

ous refer to the fact that moisture exchange between the sample

nd the surrounding air is prevented). Their aim is to verify if the
PR is the same under different states of stress. The strains used to 

http://dx.doi.org/10.1016/j.ijsolstr.2017.02.009
http://www.ScienceDirect.com
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s  
ompute the CPR are the basic creep strains, to which the autoge-

eous shrinkage of a companion specimen are subtracted as well

s the elastic strains at loading. 

To compute the CPR, the authors first compute the uniaxial

ompliance J u ( t ) using a uniaxial creep test. Then, they assume

hat during a triaxial test, there might be one different CPR 

or each direction. This assumption is surprising because in

eneral anisotropic elasticity, each PR is a property of two direc-

ions. The CPR in each direction is computed from strains of the

riaxial test in this direction and the knowledge of the uniaxial

ompliance. 

The computation of the CPR is hence independent from that of

he elastic PR. Using these relations, they show that the CPR de-

ends on the triaxiality of the loading. 

Jordaan and Illston also published creep test results on cubic

amples in 1969 ( Jordaan and Illston, 1969 ). The strain used is

he basic creep strain of which the autogeneous shrinkage is sub-

racted. 

Their expression are completely different to Gopalakrishnan

t al.’s. Little justification is given in the paper, but the equations

ere re-derived by Benboudjema in an internal document at EDF

 Benboudjema et al., 20 0 0 ). Four different expressions are used for

he CPR depending on the loading type (uniaxial, biaxial, hydro-

tatic or general triaxial). 

These expressions are complex but rigorous. They allow com-

uting an apparent CPR in case the material is not exactly

sotropic. 

York et al. (1970) , in a study of multiaxial creep on cylindri-

al samples loaded with an axial stress and a radial stress, com-

uted the CPR by simply using the same relation as for the PR in

lasticity, replacing elastic strains by the creep strains corrected of

hrinkage strains. To our knowledge, it is the first time this rela-

ion is used to compute the CPR. If the material is truly isotropic,

t yields the same results as Jordan and Illston’s. This approach is

lso used in the final report of the study ( Kennedy, 1975 ) and in

cDonald (1976) . 

As will be seen in the theoretical presentation in Section 2 , this

pproach is the closest to the one which will be adopted in this

aper, based on isotropic linear viscoelasticity. 

Parrott performed in 1974 uniaxial tests on cement paste sam-

les during which axial and transverse strains were measured

 Parrott, 1974 ). The CPR is computed using only the creep strain,

.e. the total strain minus the elastic and shrinkage strain. This ap-

roach has the inconvenient that it yields a quantity which cannot

e easily related to volumetric and deviatoric compliances. 

Grasley and Lange (2007) used the RPR. It is simply called the

iscous Poisson’s ratio, and it is computed in the transformed do-

ain from the bulk and shear relaxation moduli using an equation

hich is analogous to Eq. (41) of this document. Since the corre-

pondence principle is applicable to the RPR (as will be shown in

he sequel), all the usual relations between elastic coefficients can

e used in the transformed domain. This definition is rigorous but

equires assuming that the material is non ageing in order to use

he Laplace transform, and does not permit computing the Pois-

on’s ratio directly in the time domain which makes it more diffi-

ult to use for experimentalists. 

More recently, Aili et al. (2015b ) developed in their article a

heory which is consistent with the one summarized in the present

aper. However, we here propose a historical perspective on the

opic and try to be exhaustive concerning the useful relations that

ave been proposed in the literature on isotropic ageing and non

geing linear viscoelasticity on the topic of viscoelastic Poisson’s

atios. 

In their article, Aili et al. define the creep and relaxation

oisson’s ratio in the time domain, in the case of ageing linear

iscoelasticity, using uniaxial creep and relaxation experiments.
he relation (40) between creep and relaxation Poisson’s ratio is

hown. 

A variety of points of view on the viscoelastic Poisson’s ratio

ave been expressed in the literature on concrete science. As a

onsequence, the equations used to compute the PRs differ from

ne author to the other. The aim of the present paper is to provide

 comprehensive presentation of the relations which can be used

o rigorously compute and manipulate viscoelastic PRs and relate

hem to compliance and relaxation functions. To do so, we propose

o use the classical theory of isotropic linear viscoelasticity. 

As mentioned by Gurtin and Sternberg (1962) , the development

f the theory of linear viscoelasticity was initiated by Boltzmann

1878) and Volterra (1909) . The elaboration of this mechanical

nd mathematical theory lead to Volterra’s theory of functionals

 Volterra, 1959 ) and made possible subsequent developments in

he50’s. In the particular case of non ageing viscoelasticity, spec-

ral decomposition of relaxation function was established ( Biot,

954 ) and the correspondence principle, allowing the use of results

stablished in the case of elasticity for viscoelasticity, using the

ourier transform ( Read, 1950; Sips, 1951 ) or most of the time the

aplace–Carson transform ( Mandel, 1955; Lee, 1960; Biot, 1958 ). An

verview of these studies can be found in Mandel (1966) in French,

r Christensen (2012) . 

Ageing viscoelasticity has also been studied, but closed-form

olution are more difficult to derive ( Mandel, 1958 ). However, most

aterials (polymers, concrete) are ageing, which is why in this

ork we try to mention the existing results in that field. 

Thermodynamics has allowed deriving restrictions on the relax-

tion functions in a non ageing framework ( Biot, 1954; Mandel,

966; Day, 1970; Christensen, 1972, 2012 ) but results concerning

he ageing case are scarce. In the field of concrete science, empir-

cal knowledge about the evolution of relaxation and compliance

unctions exist ( Bažant, 1975; Bažant and Wittmann, 1982; Jiràsek,

015 ), but the thermodynamic theory of linear ageing viscoelastic-

ty seems, to the knowledge of the authors, incomplete. 

The theory of linear viscoelasticity has been particularized to

he isotropic case by many authors ( Mandel, 1966; Christensen,

012 ), leading to the introduction of bulk and shear compliance

nd relaxation functions, but also to the rigorous definition of

reep and relaxation Poisson’s ratios (in ageing and non ageing

ases). The RPR has the advantage that in the non ageing case, it

an be used along with the correspondence principle. A general

quation between the CPR and the RPR has been established (see

or example Salençon, 1983 ), but the origin of this relation is not

lear to the present authors. It is valid in the ageing case. It has

lso been shown (apparently independently) by van der Varst and

ortsmit (1992) in the non ageing case. 

Outside concrete science, applications on polymers and even

ood has motivated the use of viscoelastic Poisson’s ratio, with

gain a variety of approaches ( Grassia et al., 2010; Lu et al., 1997;

andini and Pegoretti, 2011; Ashrafi et al., 2008 ). 

The topic has been recognized as a difficult one and has been

he focus of articles by Lakes (1992) ; Lakes and Wineman (2006) ,

ilton and Yi (1998) ; Hilton (20 01, 20 09, 2011) and other authors

 Tschoegl et al., 2002; van der Varst and Kortsmit, 1992 ). In these

rticles, the distinction between various kinds of viscoelastic Pois-

on’s ratios is discussed. However we believe that Hilton’s clas-

ifications are not complete since a clear differentiation between

he relaxation and the creep Poisson’s ratio is missing. Moreover,

 debate about the monotonicity of the relaxation Poisson’s ratio

as been initiated by Tschoegl et al. (2002) ; Lakes and Wineman

2006) and further discussed on the basis of experimental data on

olymers by Grassia et al. (2010) . 

Therefore we believe that even if the definitions of the RPR and

PR from the linear viscoelasticity theory are straightforward, a

ummary of this theory as well as explanations about the signif-
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icance of these Poisson’s ratio and how they relate to other coeffi-

cients would be beneficial to the concrete science community, and

also to other communities working on viscoelastic materials. 

As shown in this introduction, the viscoelastic Poisson’s ratios

have been used extensively in concrete science, but sometimes not

exploiting fully the knowledge that mechanics can bring on these

quantities. The aim of this article is to bridge this gap. To do so,

first a theoretical presentation of linear viscoelasticity is proposed.

The parallels with elasticity are highlighted. Then a synthetic pre-

sentation of all useful relations between the compliances, relax-

ation functions and the viscoelastic Poisson’s ratios is proposed.

The present authors believe that these formulas are very useful to

help dealing correctly with isotropic linear viscoelasticity. Second,

discussions about the thermodynamical restrictions on viscoelas-

tic parameters and about the validity and applicability of Poisson’s

ratios in viscoelasticity are proposed. Finally, four examples of the

use of Poisson’s ratios in concrete science are proposed. Three of

them are computational applications, among which one considers

ageing; one is experimental. A final example from the field of poly-

mers is proposed in order to show the wide applicability of the

theory reviewed in this article. 

2. Material behaviour in linear viscoelasticity 

This section introduces the linear viscoelastic behaviour, in the

general anisotropic case, and particularized to isotropy. Then the

uniaxial creep and relaxation experiments are modelled, to derive

the creep and relaxation Poisson ratios. Eventually, useful relations

between viscoelastic material parameters are gathered. The ageing

and non ageing cases are considered. 

2.1. General 3D behaviour 

The anisotropic linear viscoelastic behaviour is recalled in this

section. Even if these equations can be found in classical textbooks,

they serve to introduce the notations adopted in this paper, and for

comprehensiveness. 

2.1.1. Response to a step of stress or strain 

As the linear viscoelastic behaviour is completely defined by the

response to a step of stress or strain, the latter is considered first.

If the stress is imposed equal to: 

σ (t) = σ 0 H(t − t 0 ) (1)

Where H is the Heaviside function, then the strain response can be

written using a creep compliance J , which is a fourth order ten-

sor with minor symmetries, depending on two time variables ( t,

t 0 ). The second variable represents the time at which the stress in-

crement is applied, the first one represents the time at which the

strain is measured. The consequences of a loading increment are

only seen at times larger than the loading time. Hence: 

∀ t < t ′ , J (t , t ′ ) = 0 (2)

Due to the assumption of linear behaviour, the strain response

writes: 

ε(t) = J (t , t 0 ) : σ 0 (3)

Similarly, if a strain step: 

ε(t) = ε 0 H(t − t 0 ) (4)

is applied, the stress response can be written using a relaxation

tensor R : 

σ (t) = R (t , t 0 ) : ε 0 (5)

Let us now generalize these equations to the case of complex stress

and strain histories. 
.1.2. Boltzmann formula and Stieltjes integrals 

For any strain or stress history, the 3D linear viscoelastic me-

hanical behaviour can be written using the creep compliance J .

s a convenient alternative to Boltzmann integrals, Stieltjes inte-

rals can be used ( Volterra, 1959; Mandel, 1966 ). 

(t) = 

∫ t 

t ′ = −∞ 

J (t , t ′ ) : d σ (t ′ ) 

r ε(t) = J (t, . ) ̊: σ (. ) or ε = J ̊: σ (6)

here :̊ is the Volterra integral tensor operator. The Stieltjes inte-

rals will be used in this document because of their very compact

orm. 

Likewise, the material behaviour can be expressed using the re-

axation tensor R . 

( t ) = 

∫ t 

t ′ = −∞ 

R 

(
t , t ′ 

)
: d ε 

(
t ′ 
)

r σ( t ) = R ( t, . ) ̊: ε ( . ) or σ = R ̊: ε (7)

The relaxation and compliance tensors are inverses in the sense

f the Volterra integral tensor operator: 
 t 

t ′ = −∞ 

R (t , t ′ ) : d J (t ′ , t 0 ) = H(t − t 0 ) I 

r R (t, . ) ̊: J (., t 0 ) = H(t − t 0 ) I 

r R ̊: J = H I (8)

.1.3. 3D non ageing linear viscoelasticity 

When the material is non ageing, J (t , t ′ ) = J (t − t ′ ) and

 (t , t ′ ) = R (t − t ′ ) . Thanks to this assumption, the Boltzmann or

tieltjes integrals are transformed into convolution products. Eq.

6) becomes: 

(t) = 

∫ t 

t ′ = −∞ 

J (t − t ′ ) : d σ (t ′ ) or ε = J 
� 
: σ (9)

q. (7) becomes: 

(t) = 

∫ t 

t ′ = −∞ 

R (t − t ′ ) : d ε(t ′ ) or σ = J 
� 
: ε (10)

here the notation 

� 
: is not exactly the usual Riemann convolu-

ion product, but its derivative, which is called the Stieltjes con-

olution product ( Mandel, 1966 ). Now, introducing the Laplace–

arson transform of a time function f : 

f � (p) = p 

∫ ∞ 

−∞ 

f (t) e −pt d t (11)

qs. (9) and (10) can be written in the transformed domain: 

 

� = J 
� : σ � and σ � = R 

� : ε � (12)

hile the relation between the creep compliance and the relax-

tion function becomes 

 

� : R 

� = I (13)

.2. Isotropic linear viscoelasticity 

A presentation of this topic was given by Mandel as early as

958 ( Mandel, 1958 ). The relations presented here are close to

andel’s except analogs of the bulk and shear moduli in elastic-

ty are used instead of Lamé coefficients. 

.2.1. General stress or strain histories 

Let us now assume that material is isotropic. The behaviour can

ow be described by two scalar functions. A convenient way to

rite the isotropic behaviour is to project the previous relations

n the basis J , K of isotropic fourth order tensors: 

 (t , t ′ ) = 3 R k (t , t ′ ) J + 2 R g (t , t ′ ) K (14)
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3 
ntroducing the bulk R k and shear R g relaxation functions. The

calar factors 3 and 2 are introduced to mimic the expression of

he elastic isotropic stiffness tensor as a function of the bulk and

hear moduli. The behaviour (7) thus becomes: 

= (R k ◦ tr ε)1 + 2 R g ◦ ε dev (15)

ntroducing the Volterra integral operator ◦. 

The tensor of compliance functions is written similarly: 

 (t , t ′ ) = 

1 

3 

J k (t , t ′ ) J + 

1 

2 

J g (t , t ′ ) K (16)

ntroducing the bulk J k and shear J g compliance functions. The be-

aviour (6) becomes: 

 = 

1 

9 

(J k ◦ tr σ )1 + 

1 

2 

J g ◦ σ dev (17)

According to (8) , the bulk (resp. shear) relaxation and compli-

nce functions are inverses in the sense of the Volterra integral

perator: 

 k ◦ J k = H and R g ◦ J g = H (18)

.2.2. Case of a uniaxial stress history 

As both the uniaxial creep and relaxation tests involve a uni-

xial stress tensor history σ (t) = σ11 (t) e 1 � e 1 , this specific case is

nvestigated here, without referring to any particular form for the

tress history σ 11 ( t ). 

se of the compliances. Eq. (17) still holds in this particular case,

nd allows to write the longitudinal (along 11) and transverse

along 22) components of the strain tensor history as: 

 11 = 

(
J k 
9 

+ 

J g 

3 

)
◦ σ11 (19) 

 22 = 

(
J k 
9 

− J g 

6 

)
◦ σ11 (20) 

The ratio of the longitudinal strain to the longitudinal stress

istories can then be written as a function of either the longitu-

inal stress or the longitudinal strain history: 

ε 11 

σ11 

= 

(J k / 9 + J g / 3) ◦ σ11 

σ11 

= 

ε 11 

(J k / 9 + J g / 3) 
−1 ◦ ε 11 

(21) 

here the last expression has been obtained from the inversion of

19) , solving the Volterra integral equation for σ 11 . Be aware that

n this text, the fractional bar represents the usual scalar division,

hereas the “−1 ” exponent represent the inversion in the sense

f the Volterra integral operator “◦”. This is critical to avoid con-

usions. Both equivalent expressions of (21) will be useful to inter-

ret the particular cases of the creep (where the evolution of σ 11 

s prescribed) and relaxation (where the evolution of ε11 is pre-

cribed) tests. 

The ratio of the transverse strain to the longitudinal strain his-

ories can be written similarly: 

ε 22 

ε 11 

= 

(J k / 9 − J g / 6) ◦ σ11 

(J k / 9 + J g / 3) ◦ σ11 

= 

(J k / 9 − J g / 6) ◦ (J k / 9 + J g / 3) 
−1 ◦ ε 11 

ε 11 

(22) 

se of the relaxation functions. Now using Eq. (15) in the case of

niaxial stress history, and using the fact that ε 22 = ε 33 as the ma-

erial behaviour is isotropic, one gets two relations: 

11 = 

(
R k + 

4 

3 

R g 

)
◦ ε 11 + 

(
2 R k −

4 

3 

R g 

)
◦ ε 22 (23) 

 = 

(
R k −

2 

3 

R g 

)
◦ ε 11 + 

(
2 R k + 

2 

3 

R g 

)
◦ ε 22 (24)
hich yields a relation between the transverse and longitudinal

trains: 

ε 22 

ε 11 

= − (2 R k + 2 R g / 3) 
−1 ◦ (R k − 2 R g / 3) ◦ ε 11 

ε 11 

(25) 

nd also the ratio of longitudinal stress to longitudinal strain

hich is not displayed here. 

.2.3. Uniaxial creep and relaxation experiments 

The aim is to derive the ageing linear viscoelastic “equivalents”

f the Young’s modulus and Poisson’s ratio, by analogy with their

efinition in elasticity. 

niaxial creep experiment. In the uniaxial creep experiment, for

ny given loading time t 0 , the stress tensor evolution is prescribed

s: 

(t) = σ 0 
11 H(t − t 0 ) e 1 � e 1 (26)

First part of Eq. (21) then allows to define the “uniaxial compli-

nce function” J E : 

 E (t, t 0 ) = 

ε 11 (t) 

σ11 (t) 
= (J k / 9 + J g / 3)(t, t 0 ) (27)

hile first part of Eq. (22) then allows to define the “creep Pois-

on’s ratio” νc . 

c (t, t 0 ) = −ε 22 (t) 

ε 11 (t) 
= − (J k / 9 − J g / 6)(t, t 0 ) 

(J k / 9 + J g / 3)(t, t 0 ) 
(28)

s is well-known, the creep Poisson’s ratio is not constant unless

he volumetric and deviatoric compliances are proportional which

ight be reasonable or not depending on the considered material.

hese Eqs. (27) and (28) are identical to equations given by Bažant

1975) ; Bažant and Wittmann (1982) . 

Recalling that in elasticity the relations between the Young’s

odulus and the Poisson’s ratio on the one hand, and on the bulk

nd the shear modulus on the other hand are: 

 = 

9 KG 

3 K + G 

, ν = 

3 K − 2 G 

2(3 K + G ) 
(29) 

t is interesting to note that Eqs. (27) and (28) can be rewritten: 

1 

J E (t, t 0 ) 
= 

9 
J k J g 

3 
J k 

+ 

1 
J g 

, νc (t, t 0 ) = 

3 
J k 

− 2 
J g 

2( 3 
J k 

+ 

1 
J g 
) 

(30)

he inverses of the compliances (but not directly the relaxations)

nd the CPR verify the same relations as their counterparts (in

erms of inverses of stiffnesses) in elasticity. Let us also note that

he partial time derivative of the CPR can be conveniently written

s a function of the ratio of the shear and volumetric compliances:

∂νc 

∂t 
(t, t 0 ) = 

9 

2 

∂ ( J g /J k ) 
∂t 

(t, t 0 ) (
3 

J g (t,t 0 ) 

J k (t,t 0 ) 
+ 1 

)2 
(31) 

hich, to the knowledge of the present authors, has not been

ointed out before. This equation has the important consequence

hat the time variations of the CPR are identical to those of the

atio of the deviatoric and volumetric compliances. 

The viscoelastic linear isotropic constitutive law can conve-

iently be rewritten using the CPR and the uniaxial compliance:

 = 

((
1 − 2 νc 

J E 

)
◦ tr σ

)
1 + ( (1 + νc ) J E ) ◦ σ dev (32) 
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Table 1 

A summary of useful relations in ageing 

linear viscoelasticity. 

J E = J k / 9 + J g / 3 

νc = 

3 J g −2 J k 
2(3 J g + J k ) 

J g = 2(1 + νc ) J E 

J k = 3(1 − 2 νc ) J E 

R E = 9 R g ◦ ( R g + 3 R k ) 
−1 ◦ R k 

νr = ( 2(3 R k + R g ) ) 
−1 ◦ ( 3 R k − 2 R g ) 

R g = 

R E 
2 

◦ (H + νr ) −1 

R k = 

R E 
3 

◦ (H − 2 νr ) −1 

R k ◦ J k = H 

R g ◦ J g = H 

J E ◦ R E = H 

νc J E = νr ◦ J E 

2

r

i

 

s  

p  

r  

b  

c

2

2

i

 

c  

t  

d  

f  

M

 

g

c  

u  

a  

u

 

 

c  

l

σ  

 

w  

1  

c  

l  

(

Uniaxial relaxation experiment. In the uniaxial relaxation experi-

ment, the evolution of the component 11 of the strain is prescribed

as: 

ε 11 (t) = ε 0 11 H(t − t 0 ) (33)

And the components 22, 33, 23, 13, 12 of the stress tensor

are constantly equal to 0. Thus, the particular case studied in

Section 2.2.2 is also applicable here. 

Second part of Eq. (21) then allows to define the “uniaxial re-

laxation function” R E : 

1 

R E (t, t 0 ) 
= 

ε 11 (t) 

σ11 (t) 
= 

1 

(J k / 9 + J g / 3) 
−1 

(t, t 0 ) 
(34)

While second part of Eq. (22) allows to define the “relaxation

Poisson’s ratio” νr : 

νr (t, t 0 ) = −ε 22 (t) 

ε 11 (t) 
= −

(
(J k / 9 − J g / 6) ◦ (J k / 9 + J g / 3) 

−1 
)
(t, t 0 ) 

(35)

This coefficient has been defined in the Laplace-Carson trans-

formed domain by Mandel (1966) ; Salençon (1983) (under the

name relaxation Poisson’s ratio) and Christensen (2012) (under the

name viscoelastic Poisson’s ratio), and also in the general case and

in the time domain by Salençon (2009) . 

Using Eq. (25) , the relaxation Poisson’s ratio can also be writ-

ten: 

νr (t, t 0 ) = −ε 22 (t) 

ε 11 (t) 
= 

(
(2 R k + 2 R g / 3) 

−1 ◦ (R k − 2 R g / 3) 
)
(t, t 0 ) 

(36)

This relation is similar to a relation given by Mandel (1958) . 

Again, it is interesting to rearrange these equations in the same

manner as the well known relations used in elasticity (29) : 

R E = 9 R g ◦ ( R g + 3 R k ) 
−1 ◦ R k 

= 9 R k ◦ ( R g + 3 R k ) 
−1 ◦ R g , 

νr = ( 2(3 R k + R g ) ) 
−1 ◦ ( 3 R k − 2 R g ) 

(37)

However, note that directly deriving Eqs. (37) from the elasticity

relations (29) is not possible due to the non commutativity of the

Volterra integral operator. 

The viscoelastic linear isotropic constitutive law can conve-

niently be rewritten using the relaxation Poisson’s ratio and the

uniaxial relaxation function: 

σ = 

R E 

3 

◦ (H − 2 νr ) 
−1 ◦ ( tr ε)1 + R E ◦ (H + νr ) 

−1 ◦ ε dev (38)

2.2.4. Relation between both Poisson’s ratios 

Multiplying (in the sense of the Volterra integral operator)

(27) by the inverse (in the sense of the product between scalars)

of (34) allows to retrieve that the uniaxial compliance and relax-

ation functions are inverses (in the sense of the Volterra integral

operator): 

J E ◦ R E = H (39)

Eliminating J k / 9 − J g / 6 from Eqs. (28) and (35) , and substituting

J k / 9 + J g / 3 by J E , yields a relation between both Poisson’s ratios: 

νc J E = νr ◦ J E (40)

where on the left hand side the product is the usual product

between scalars, and on the right hand side, the product is the

Volterra integral operator. The formula linking the two Poisson’s

ratios can be found, for example, in Salençon (1983) ; Salençon

(2009) . As mentioned by Aili et al. (2015b ), it is different from

the relation derived by Lakes and Wineman in Lakes and Wineman

(2006) . 
.2.5. A practical summary of relations between compliances, 

elaxation functions and viscoelastic Poisson’s ratios in linear 

sotropic ageing viscoelasticity 

In this section, the main relations presented in the previous

ections are gathered in a compact form in Table 1 (the time de-

endences are omitted for clarity). Three sections are proposed:

elations between the compliance functions and the CPR, relations

etween the relaxation functions and the RPR, relations between

ompliances and relaxation functions. 

.3. Isotropic non ageing viscoelasticity 

.3.1. From Stieltjes integrals in the time domain to simple products 

n the transformed domain 

Relations given in this section for the case of non ageing vis-

oelasticity can be rewritten in the case of non ageing viscoelas-

icity, which makes the use of the Laplace–Carson transform intro-

uced in Section 2.1.3 possible. Such equations have been known

or decades. A short presentation by Mandel can be found in

andel (1955) . 

First, keeping the equations in the time domain, Stieltjes inte-

rals become convolution products: in all equations, the symbol ◦
an simply be replaced by ∗, denoting a Stieltjes convolution prod-

ct. Then, applying the Laplace–Carson transform to the equations

s done in Section 2.1.3 , convolution products become simple prod-

cts. Let us only apply this procedure to Eq. (37) as an example: 

νr (t, t 0 ) = νr (t − t 0 ) = ( 2(3 R k + R g ) ) 
−1 ∗ ( 3 R k − 2 R g ) 

ν∗
r = 

3 R 

∗
k 
− 2 R 

∗
g 

2(3 R 

∗
k 
+ R 

∗
g ) 

(41)

The viscoelastic linear non ageing isotropic constitutive law can

onveniently be rewritten in the transformed space using the re-

axation Poisson’s ratio and the uniaxial relaxation function: 

∗ = 

R 

∗
E 

3(1 − 2 ν∗
r ) 

( tr ε ∗)1 + 

R 

∗
E 

1 + ν∗
r 

ε ∗dev (42)

The equations obtained are identical to equations in elasticity,

hich was noted long ago by Lee, Biot, Mandel, and others ( Lee,

960; Biot, 1958; Mandel, 1955 ) and gave birth to the well-known

orrespondence principle (such a principle was stated even ear-

ier by Read using the Fourier transform ( Read, 1950 ), and by Sips

1951) . 
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Table 2 

A summary of useful relations in 

non-ageing linear viscoelasticity. 

R ∗E = 

9 R ∗g R 
∗
k 

R ∗g +3 R ∗
k 

R ∗
k 
J ∗
k 

= 1 

ν∗
r = 

3 R ∗
k 
−2 R ∗g 

2(3 R ∗
k 
+ R ∗g ) R ∗g J 

∗
g = 1 

R ∗g = 

R ∗E 
2(1+ ν∗

r ) 
J ∗E R 

∗
E = 1 

R ∗
k 

= 

R ∗E 
3(1 −2 ν∗

r ) 
(νc J E ) 

∗ = ν∗
r J 

∗
E 

2

r
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3
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(  
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.3.2. A practical summary of relations between compliances, 

elaxation functions and viscoelastic Poisson’s ratios in linear 

sotropic non ageing viscoelasticity 

In the non ageing case, the relations between the relaxation

unctions are gathered in Table 2 . 

. Discussion 

Even if the theory presented in the previous section has been

nown for a long time in the continuum mechanics community,

ome discussion is still needed on some issues. Here, the questions

f the thermodynamical restrictions on the relaxation and compli-

nce functions as well as the applicability of the viscoelastic Pois-

on’s ratio are addressed. 

.1. Restrictions on the relaxation functions 

In isotropic elasticity, it can be derived easily that all moduli

Young’s, shear, bulk moduli) must be positive. As a consequence,

he elastic Poisson’s ratio lies between −1 and 1/2. In the vis-

oelastic context, analogous relations are also useful in order to

heck the consistency of empirical models with thermodynamics.

he aim of this section is hence to motivate the need for future

ork in that field. 

.1.1. Isotropic ageing linear viscoelasticity 

To the knowledge of the authors, little information can be found

n the literature regarding the thermodynamical restrictions on the

alues of the relaxation functions or of the compliance functions.

f course, the most intuitive of these relations is that the relax-

tion and compliance functions are positive at all times and for all

oading times. Going back to Eq. (28) , a consequence is that the

PR also lies between −1 and 1/2 both in the ageing and non-

geing cases. However, one can imagine that more relations exist

nd should be proven thermodynamically, but the authors could

ot prove that the relaxation PR respects these bounds, except in

he transformed domain in the non-ageing case, which is analo-

ous to elasticity. 

Bažant mentions in Bažant (1975) that all test data on concrete

gree with the following inequalities: 

 (t , t ′ ) , ∂ J E (t , t ′ ) 
∂t 

≥ 0 , 
∂ 2 J E (t , t ′ ) 

∂t 2 
≤ 0 (43) 

∂ J E (t , t ′ ) 
∂t ′ ≤ 0 , 

∂ 2 J E (t , t ′ ) 
∂t ′ 2 ≥ 0 (44) 

ut unfortunately no mathematical proof is proposed for these in-

uitive relations. Eq. (43) mean that the compliance functions are

ncreasing functions of time and that the rate of increase decreases

ver time. Eq. (44) mean that when looking at strains at a given

ime in a creep tests, these strains are smaller if loading has been

erformed later, to an extent which is greater if the loading time

s larger. 
Bažant gives other intuitive relations of the same kind in Bažant

nd Wittmann (1982) . In addition to Eqs. (43) and (44) , the follow-

ng expression is added: 

∂ J E (t , t ′ ) 
∂t ′ 

]
t −t ′ 

≤ 0 (45) 

hich means that looking at strains at a given amount of time af-

er loading, these strains are lower if loading was performed later.

n our opinion, this relation which seems well adapted to concrete

annot be general, since it depends on the kind of ageing under-

one by the material. The equation: 

 t ′ > t , 
∂ 2 J(t , t ′ ) 
∂t ∂t ′ ≥ 0 (46)

s also given, and is explained as a condition of non-divergence of

reep curves (corresponding to different loading times). 

Jiràsek has recently studied compliances functions from various

reep models for concrete ( Jiràsek, 2015 ). The criterion used has

een the monotonicity of the recovery curves (i.e. strain after un-

oading of a creep test). This condition translates on the compli-

nce function as Eq. (46) , even if the physical meaning is slightly

ifferent since it involves recovery curves. 

As a conclusion, the present authors have not been able to

nd a detailed presentation of the thermodynamical restrictions on

ompliance and relaxation functions in the general ageing case. 

.1.2. Isotropic non ageing linear viscoelasticity 

Biot has first proposed a thermodynamic analysis of the lin-

ar viscoelasticity ( Biot, 1954 ), based on Onsager’s principle. He

howed that the relaxation function can be written using a relax-

tion spectrum, and that all characteristic times were positive, in

he context of anisotropic linear viscoelasticity. This analysis was

urther developed by Mandel (1966) , showing that the spectra of

he relaxation functions and compliances are non-negative (in the

ensorial case). As a consequence, the relaxation functions R ( t ) and

ompliances J ( t ) have alternate derivatives: 

(−1) n R 

(n ) ≥ 0 , and (−1) n J (n ) ≤ 0 , n ≥ 1 (47)

n the multiaxial isotropic case, these relations apply to the eigen-

alues of the compliance of relaxation tensors, which are J k and J g 
or the compliance tensor, and R k and R g for the relaxation tensor

n the isotropic case. 

Also from a thermodynamics point of view, but avoiding the use

f Onsager’s principle, Christensen derived restrictions on shear

nd bulk relaxation functions in the non ageing case ( Christensen,

972; 2012 ). The requirement that the stored energy under a strain

tep is non-negative yields: 

 k (t) ≥ 0 , R g (t) ≥ 0 (48)

oreover, the requirement that the rate of energy dissipation must

e non-negative yields: 

 

′ 
k (t) ≤ 0 , R 

′ 
g (t) ≤ 0 (49)

inally, the so-called condition of fading memory yields: 

 

′′ 
k (t) ≥ 0 , R 

′′ 
g (t) ≥ 0 (50)

owever, Christensen acknowledges a condition of alternate signs

f all derivatives of the relaxation functions close to Mandel

1966) proposed by Day (1970) , but mentions it is not possible to

rove these conditions from the three principles mentioned ear-

ier ( Christensen, 1972 ). Christensen does not acknowledge Man-

el’s work, perhaps due to the fact that it was published in French.

Concerning the CPR, using relation for νc given in Eq. (30) , and

he fact that deviatoric and spherical compliances are positive, it

an be shown, as in elasticity, that the CPR lies between −1 and

/2. The same can be easily shown for the RPR in the transformed
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trix viscous behaviour influences the effective Poisson’s ratios. 
domain. All RPR computed (in ageing or non ageing case) in the

time domain lied between the same boundaries, but no proof has

been found to show that this is general. 

As a conclusion, more work is needed to improve the knowl-

edge on the thermodynamical restrictions on viscoelastic parame-

ters. 

3.2. Creep and relaxation Poisson’s ratios 

3.2.1. Variation of the viscoelastic Poisson’s ratios 

As shown in Eq. (31) , the partial time derivative of the CPR can

be related to the time derivative of the ratio J g / J k , and has the same

sign. This makes clearer the common sense that if creep is faster

in shear, the CPR increases, while if it is faster in volume, it de-

creases. In fact it is not the ratio of the derivatives of the compli-

ances which is concerned, but the derivative of the ratio of the

compliances. Therefore, if the ratio J g / J k decreases, the CPR also

decreases. However, the authors were not able to derive a simi-

lar general expression on the variation of the RPR, which would

have been useful to verify Tschoegl’s statement ( Tschoegl et al.,

2002 ) that the viscoelastic Poisson’s ratio (corresponding to our

relaxation Poisson’s ratio) is a non-decreasing function of time. In-

stead of that, practical examples will be shown in Section 4 both

in ageing and non ageing viscoelasticity in contradiction with that

statement which was already pointed to be wrong by Lakes and

Wineman (2006) . 

3.2.2. Discussion about the correspondence principle and viscoelastic 

Poisson’s ratio 

It has been argued in the literature that the elastic/viscoelastic

analogy does not apply to the viscoelastic Poisson’s ratio ( Hilton

and Yi, 1998 ). It has been shown here that one just needs to be

careful so as to correctly define the Poisson’s ratio in viscoelastic-

ity. If one deals with the creep Poisson’s ratio, which is commonly

used by experimental researchers, particularly in the field of con-

crete science since it is straightforward to compute from experi-

ments, the correspondence principle cannot be used. However, it

can be used with the relaxation Poisson’s ratio, which can be eas-

ily computed if the creep Poisson’s ratio and the uniaxial compli-

ance are known (the numerical inversion of the integral equation

can be done following ( Bažant, 1972; Sorvari and Malinen, 2007 ). 

As mentioned earlier, due to the validity of the correspon-

dence principle for the relaxation Poisson’s ratio, some authors

have used it to define the relaxation Poisson’s ratio directly in

the transformed domain ( Salençon, 1983; Christensen, 2012; Lakes,

1992; Lakes and Wineman, 2006; Tschoegl et al., 2002; Grasley and

Lange, 2007 ). 

3.2.3. Comparison with Hilton’s classification of viscoelastic Poisson’s 

ratios 

It has been argued by Hilton and Yi (1998) , amongst others,

that the viscoelastic Poisson’s ratio is load-history dependent, and

that this fact prevents from using these functions to describe the

material behaviour in general cases. Here, following early works

on linear viscoelasticity, it has been shown that although the vis-

coelastic Poisson’s ratio is load-history dependent, it is perfectly

consistent to accept this fact and define two particular cases of

viscoelastic Poisson’s ratio which were called relaxation and creep

Poisson’s ratio since they are equal to the opposite ratio of lat-

eral to axial strains in experiments of the same name. Both these

coefficients can be used in the time domain to describe generally

the behaviour of any linear isotropic viscoelastic solid. However, it

has also been shown that only the relaxation Poisson’s ratio can be

used in the transformed domain in the non ageing case. 

It is interesting to note that the two viscoelastic Poisson’s ra-

tio defined here are not perfectly consistent with the five classes
f Poisson’s ratios defined by Hilton (20 01, 20 09) . Class I corre-

ponds to the opposite of the ratio of lateral to axial strains, with-

ut further precisions about the loading. Class II is based on the

ame equation, except that the axial strain is constant, without fur-

her information about strains or stresses in the other directions.

lass III is based on Fourier transform but again the loading is not

pecified. Class IV and V are based on the Hencky strain and on

he strain rates respectively. Therefore, the definition used in this

aper both belong to Class I, for two different particular loadings

orresponding to the uniaxial creep and relaxation experiments.

ome additional classes of viscoelastic Poisson’s ratios are defined

n Hilton (2011) , but again the distinction between creep and re-

axation Poisson’s ratio (both belonging to class I) is not made, and

he relation between these coefficients is not given. 

Finally, both Poisson’s ratio are valid material parameters, each

aving advantages or disadvantages depending on the application.

owever, the use of spherical and deviatoric compliances or re-

axation functions might be preferable because less risks of error

xist. 

. Applications to concrete 

In order to illustrate how the CPR and RPR can be computed

nd how they evolve in time, different applications are proposed,

ll belonging to concrete science. 

.1. Non ageing viscoelasticity: Maxwell matrix and elastic inclusions 

A composite material made up of elastic inclusions embedded

nto a Maxwell non ageing viscoelastic matrix is first considered.

o focus on the influence of the mechanical interactions between

nclusions and matrix, the elastic and viscous Poisson’s ratios of

atrix are taken as equal. The Poisson’s ratio (either the creep or

he relaxation one) of matrix is thus constant. The matrix relax-

tion tensor reads: 

 m 

(t , t ′ ) = E m 

e −
t −t ′ 
τm H(t − t ′ ) 

(
1 

1 − 2 νm 

J + 

1 

1 + νm 

K 

)
(51)

here E m 

is the elastic Young’s modulus of matrix, νm 

is the Pois-

on’s ratio, τm 

is the Maxwell characteristic time. Inclusions are

lastic, characterised by the Young’s modulus E i and the Poisson’s

atio ν i . The volume fraction of inclusions is denoted by f i . The

ffective behaviour of this matrix-inclusions composite material is

stimated using the Mori–Tanaka scheme ( Mori and Tanaka, 1973 ).

he bulk and shear effective behaviours are found to correspond to

eneralized Maxwell models ( Ricaud and Masson, 2009 ), with two

axwell chains. The expressions of the properties of these gener-

lized Maxwell models are too lengthy to be reproduced here. 

The effective creep and relaxation Poisson’s ratios are plotted

n Fig. 1 for two values of the inclusion to matrix elastic contrast,

ither softer ( E i /E m 

= 0 . 1 ) or stiffer ( E i /E m 

= 10 ) than the matrix.

learly enough, even if both Poisson’s ratios of matrix and inclu-

ions are constant (and taken as equal in this first application), the

ffective Poisson’s ratios are not constant, due to mechanical inter-

ctions between phases. Furthermore, the effective Poisson’s ratios

an be non monotonic (case E i /E m 

= 0 . 1 ), which is in contradic-

ion with Tschoegl statement that viscous Poisson’s ratio are non-

ecreasing ( Tschoegl et al., 2002 ). On this example, the stiffness

ontrast between inclusions and matrix is found to have a varying

nfluence (as also evidenced by Aili et al. (2015b ), depending on

ime, on the effective Poisson’s ratios: 

• at t → 0 (elastic behaviour), influence of contrast is moderate, 

• at finite times, influence of contrast is greater than in the elas-

tic case, 

• at t → ∞ , contrast does not have any influence as only the ma-
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Fig. 1. Non ageing Maxwell matrix and elastic inclusions: effective relaxation and 

creep Poisson’s ratios, influence of elastic contrast between inclusions and matrix. 
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Fig. 2. Non ageing Maxwell matrix and elastic inclusions: effective relaxation and 

creep Poisson’s ratios, influence of inclusions volume fraction. 
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R  
The influence of the inclusions volume fraction is considered on

ig. 2 . Depending on the volume fraction, the effective Poisson’s

atios can be non monotonic. Furthermore, the relaxation Poisson’s

atio can be non monotonic while the creep one is strictly mono-

onic (case f i = 0 . 5 ). 

The effective behaviour having the structure of a generalized

axwell model with two chains (with different parameters in bulk

nd shear), note that various evolutions (non-monotonic, increas-

ng, decreasing) of Poisson’s ratios are possible even with a simple

only 2 chains) rheologic model. It is even possible to encounter si-

ultaneously a monotonic creep Poisson’s ratio and a non mono-

onic relaxation Poisson’s ratio. As can be easily shown (see Aili

t al., 2015b ), the initial and final values of the creep and relax-

tion Poisson’s ratios are identical in the non ageing context. 

.2. Ageing viscoelasticity: Bažant solidification theory 

To extend the non ageing analysis proposed by Aili et al.

2015b ), a first application to ageing viscoelastic behaviours is con-

idered, using Bažant solidification theory ( Bažant, 1977 ) to define

he bulk and shear behaviours. In this theory, here extended to re-

axation tensors, a non ageing relaxation tensor R 

na is multiplied

y a so-called ageing function f a depending on loading time t ′ : 

 (t , t ′ ) = f a (t ′ ) R 

na (t − t ′ ) (52)
or the sake of simplicity, the non ageing behaviour is here rep-

esented by an isotropic Maxwell model. Spherical and deviatoric

iscoelastic properties (stiffness and viscosity) are assumed to be

ifferent: 

 

na (t − t ′ ) = 

(
3 k e −

t −t ′ 
η/k J + 2 ge −

t −t ′ 
γ /g K 

)
H(t − t ′ ) (53)
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Table 3 

Material parameters used in application. 

Non ageing behaviour Ageing function 

νe νv f a 0 f a ∞ τ a / τ

0 .4 0 .1 0 .1 1 2 

Fig. 3. Relaxation and creep functions for t ′ /τ = 0 , 1 , 2 , 3 , 4 . 

 

 

 

 

 

 

 

 

 

Fig. 4. Relaxation and creep Poisson’s ratios for t ′ /τ = 0 , 1 , 2 , 3 , 4 (left: linear time 

scale w.r.t t ; right: logarithmic time scale w.r.t t − t ′ ). 
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Alternatively, the elastic part (springs) of the isotropic Maxwell be-

haviour can be defined introducing the elastic Young’s modulus E e 

and Poisson’s ratio νe , using the classical relations: 

k = 

E e 

3(1 − 2 νe ) 
and g = 

E e 

2(1 + νe ) 
(54)

And the viscous part (dashpots) can be defined, by extension, using

the viscous Young’s modulus E v and Poisson’s ratio νv : 

η = 

E v 

3(1 − 2 νv ) 
and γ = 

E v 

2(1 + νv ) 
(55)

The elastic Young’s modulus E e and the Maxwell uniaxial charac-

teristic time τ = E v /E e are used to adimensionalize stresses and

time. 

The ageing function is taken as: 

f a (t ′ ) = f a 0 + ( f a ∞ − f a 0 ) 
(
1 − e −(t ′ /τ a ) 2 

)
(56)

where f a 0 and f a ∞ are respectively the initial and final values, and

τ a is the ageing characteristic time. 

The (arbitrary chosen) material parameters are gathered in Ta-

ble 3. 
Bulk, shear and uniaxial relaxation and creep functions are plot-

ed on Fig. 3: the behaviour is clearly ageing. Relaxation and creep

oisson’s ratios are plotted on Fig. 4 . While both Poisson’s ratios

ave the same initial value (at t → t ′ ) and tangent, the final values

when t → ∞ ) are found to differ, contrary to the non ageing case.

urthermore, in this application, the creep Poisson’s ratio seems to

onverge when t → ∞ towards a unique value irrespective of the

oading time t ′ , while it is not the case for the relaxation Poisson’s

atio. And the latter reaches much faster its asymptotic value than

he creep Poisson’s ratio. 

.3. Multiscale evolution of the CPR using Vi(CA) 2 T 

In order to illustrate how creep Poisson’s ratio can evolve in

ime, an application to the modeling of the mechanical proper-

ies of concrete is proposed. For more details on this example, the

eader can refer to Charpin et al. (2016) . A software dedicated to

he prediction of the properties of concrete has been developed

t EDF R&D since 2006. It is called Vi(CA) 2 T for Virtual Concrete

 nd Cement Ageing A nalysis Toolbox. A detailed description of the

oftware can be found in Sanahuja et al. (2016a, 2016b) . The basic

nformation needed as input by the software is the mix of con-

rete, the properties of the cement and aggregates used, as well

s the mechanical and physical properties of the hydrates. First, a

ydration module computes the evolution of the volume fraction
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Fig. 5. Multiscale morphology of concrete used in Vi(CA) 2 T V2.1.2. 
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Fig. 6. Creep Poisson’s ratios at the main levels of the morphological scale. Loading 

at 90 days. 

r  

t  

w  
f the various phases of concrete (anhydrous, water and hydrates).

econd, a morphological model describes the multiscale arrange-

ent of those phases in space as well as the shapes of the inclu-

ion phases. The morphological model used in the current version

f Vi(CA) 2 T is displayed on Fig. 5 . 

Finally, mechanical models based on micromechanics predict

lasticity (based on Sanahuja et al., 2007 ) and basic creep on

rozen microstructures thanks to recent developments based on

anahuja et al. (2011) ; Sanahuja and Dormieux (2010) . Since the

icrostructure evolves, the creep response depends on the time of

oading. However, once the loading is applied, the microstructure

emains frozen. Therefore, the Laplace transform can be used to

etermine the time response for a loading at a given time using

he corresponding elasticity problem in the transformed domain.

he elementary creep mechanism is a sliding mechanism at the

evel of C-S-H bricks and platelets. These solid particles are rep-

esented by oblate spheroids. Their instantaneous mechanical be-

aviour is isotropic, but their delayed behaviour is not, since creep

nly occurs in their plane. This creep behaviour is described by a

axwell model, which adds only one parameter compared to elas-

icity. All other phases are elastic. Therefore, at the lowest level,

reep is only deviatoric. When moving to larger scales, spherical

reep appears due to the presence of voids and rigid inclusions,

hich will be shown in this example. 

The uniaxial and transverse strains in a fictitious creep test are

omputed at all levels of the microstructure. The creep Poisson’s
 v  
atio is very high at the lowest scales (C-S-H gels), which means

hat creep is almost completely deviatoric ( Fig. 6 ). This consistent

ith the fact that the elementary creep mechanism is totally de-

iatoric, and the fact that these gels are formed as a packing of
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Fig. 7. Creep Poisson’s ratio computed from basic creep biaxial tests performed at 

EDF. The shaded area represents the uncertainty related to the thermal dilation of 

the sample due to the temperature variations in the testing room. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. Relaxation and creep Poisson’s ratios of polycarbonate, computed from data 

in Grassia et al. (2010) . 

Fig. 9. Relaxation and creep Poisson’s ratios of polycyanurate, x M = 0 . 1 , computed 

from data in Grassia et al. (2010) . 
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C-S-H elementary bricks. At larger scales, due to the incorporation

of porosity and rigid inclusions, a larger part of creep occurs under

spherical loading, which induces a much lower CPR which in turn,

remains almost constant during the creep test. 

This example shows that the variations of the CPR can be very

diverse, including non-monotonous, as is the CPR of hardened ce-

ment paste on Fig. 6 . 

4.4. Computation of the creep Poisson’s ratio for biaxial tests 

As a final application to the use of the theory of isotropic lin-

ear viscoelasticity to compute CPRs of concrete, an experimental

illustration is proposed. Biaxial creep tests were started at EDF in

2004 in order to gain a better knowledge of the multiaxial be-

haviour of concrete in concrete containment buildings of nuclear

power plants. These tests have been described in Charpin et al.

(2015) and will be the focus of a detailed article ( Charpin et al.,

To be submitted ). 

Under a biaxial state of stress, where stresses are applied in the

vertical and horizontal directions, leaving the third direction un-

loaded, a direct application of Eq. (32) yields the following expres-

sion for the CPR: 

νc (t) = 

σh ε v (t) − σv ε h (t) 

σv ε v (t) − σh ε h (t) 
(57)

This coefficient has been computed for basic creep (using the

difference of the strains measured in the basic creep test and in

the autogenous shrinkage test) and is shown on Fig. 7 . The CPR

computed from biaxial tests is almost constant. 

5. Application to amorphous polymers 

Polymers also exhibit a viscoelastic mechanical behaviour.

Grassia et al. (2010) have collected from the literature the bulk

and shear behaviours of several amorphous polymers. They have

computed the relaxation Poisson’s ratio considering the material

as non ageing, taking advantage of the Laplace transform, from the

same equation as (41) . From this experimental evidence, the relax-

ation Poisson’s ratio is found to be non monotonic for one polymer

(polycarbonate). 

In this section, the bulk and shear compliance or relaxation

functions reported by Grassia et al. (2010) are reused to compute

the relaxation Poisson’s ratio using a different technique: it is di-

rectly computed in the time domain from relaxation functions us-

ing the expression given in Table 1 or Eq. (36) . The creep Poisson’s
atio is also computed directly in the time domain from the com-

liance functions. These functions are obtained by a numerical in-

ersion of the equations of the last block in Table 1 or Eq. (28) .

esults are plotted on Fig. 8 for polycarbonate and Fig. 9 for poly-

yanurate, x M 

= 0 . 1 (the latter being the mole fraction of mono-

unctional monomer used in the material preparation). The relax-

tion Poisson’s ratio obtained by Grassia et al. (2010) is plotted as

ots. The relaxation Poisson’s ratios are consistent, up to the fact

hat bulk and shear compliance or relaxation functions have been

anually digitized on Grassia et al. (2010) , yielding some noise es-

ecially at lower times. The creep Poisson’s ratios are found to be

lightly lower compared to the relaxation ones, as also numerically

videnced in Section 4.1 for cases where the Poisson’s ratio are in-

reasing. 

The advantage of the computation of the CPR proposed here is

hat it only requires the inversion of relaxation functions to com-

liances, which was performed by a numerical discretization of the

nverse relations. Therefore, no direct or inverse Laplace transform

as needed. One can also note that the relation (31) is available on

he CPR. This relation could have brought interesting information

n the discussion about the variations of the viscoelastic Poisson’s
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atio depending on those of the compliances dealt with in Grassia

t al. (2010) . 

. Conclusion 

Several definitions of viscoelastic Poisson’s ratio have been in-

roduced by various scientific communities, notably in concrete

nd polymer fields. This paper proposes rederivations of both the

reep and relaxation Poisson ratios using classical integral expres-

ions of the linear viscoelastic behaviour. Both the ageing and non

geing cases are considered. Practical relations between isotropic

inear viscoelastic characteristics (relaxation and compliance func-

ions, Poisson’s ratios) are gathered, similarly to classical relations

etween isotropic elastic characteristics. Eventually, several exam-

les, both theoretical and practical, about concrete and polymers,

how that the evolution of both Poisson’s ratios can be non mono-

onic and quite different. 

Restrictions on viscoelastic characteristics have been studied in

 rather large extent in the non ageing case. However, up to our

nowledge, the literature still lacks such comprehensive analyses

n the ageing case. Inequalities can be found but they are more of-

en based on intuition than on thermodynamics, and having par-

icular materials in mind, such as concrete. In the same line of

hought, restrictions on the viscoelastic Poisson’s ratios are not

lear: depending on the author, the latter can be either monotonic

r non monotonic. Here, the possible non monotonicity has been

hown resorting to examples. Even if the creep Poisson’s ratio can

e straigthforwardly bounded by −1 and 1/2 as in elasticity, these

ounds are only verified on examples as far as the relaxation Pois-

on’s ratio is concerned. 
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