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ABSTRACT

The viscoelastic Poisson’s ratio is an important parameter for assessing the mul-
tiaxial creep behavior of concrete. However, its definition in viscoelasticity can gener-
ate some ambiguity: at least five different ways of defining a viscoelastic Poisson’s
ratio are presented in the literature. As to their difference either in theory or in prac-
tice, little is known. In this work, we focus on the most intuitive two ways of defining a
viscoelastic Poisson’s ratio, which we call “relaxation Poisson’s ratio” and “creep Pois-
son’s ratio”. First, we derive the analytical expressions of the two Poisson’s ratios and
a relationship between them. We show that their initial values are identical, and that
their asymptotic values when time tends towards infinity as well. We also show that
such is the case for their derivatives with respect to time. Then, considering concrete
as a non-aging linear viscoelastic material, the results of multiaxial basic creep tests on
concrete available in the literature are analyzed to compare the relaxation and the creep
Poisson’s ratios. The results show that the difference between the two Poisson’s ratios
is rather small but does exist in some cases. In such cases, whether this difference is
significant should be considered with respect to the application considered.

INTRODUCTION

The delayed behavior of nuclear containment is an important question when
the service life of these structures is discussed. The containment vessel is a biaxially
prestressed structure. In this case, the viscoelastic Poisson’s ratio is an important pa-
rameter for assessing the multiaxial creep behavior of concrete.
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However, the definition of the time-dependent Poisson’s ratio in linear vis-
coelasticity can generate some ambiguity: at least five different ways of defining a time-
dependent viscoelastic Poisson’s ratio are presented in the literature (Hilton, 2001). In
this work, we focus on two ways of defining a viscoelastic Poisson’s ratio that are based
directly on the ratio of lateral strainεl(t) over axial strainεa(t). The first one, which we
call relaxation Poisson’s ratioνr, can be measured directly in the uniaxial relaxation
test where the axial strainεa(t) is kept constant, i.e.,εa(t) = εa0:

νr(t) =
εl(t)

εa0
(1)

The second one, which we call creep Poisson’s ratioνc, can be measured directly in the
uniaxial creep test where the axial stressσa(t) is kept constant, i.e.,σa(t) = σa0:

νc(t) =
εl(t)

εa(t)
(2)

Hilton (2001), Tschoegl et al. (2002) and Lakes & Wineman (2006) showed that the
two Poisson’s ratios are not equal. How much they differ fromeach other has not been
studied yet.

The main objective of the present study is the difference between the two Pois-
son’s ratios. First, we derive the analytical expressions of the two Poisson’s ratios as
well as a relation between them. Then, we compare their initial and long-time asymp-
totic values. In the end, their difference during their evolution with respect to time is
studied for cementitious materials by analyzing multiaxial creep test results available
in literature.

POISSON’S RATIOS IN THEORY

Theoretical derivation

We restrict ourselves to non-aging linear isotropic viscoelastic materials. The
general constitutive relation through which the stress tensor σ (decomposed into the
volumetric stressσv = tr(σ)/3 and the deviatoric stress tensors = σ−σv1) is linked to
the strain tensorε (decomposed into the volumetric strainεv = tr(ε) and the deviatoric
strain tensore = ε− (εv/3)1) reads (Christensen, 1982):

σv(t) = K(t)⊗ ε̇v(t) (3a)

sij(t) = 2G(t)⊗ ėij(t) (3b)

where⊗ holds for the convolution product defined asf⊗g =
∫ t

−∞
f(t−τ)g(τ)dτ and

ḟ holds for derivative with respect to time such asḟ = df(t)/dt. Those state equations
can equivalently be written (Christensen, 1982):
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εv(t) = JK(t)⊗ σ̇v(t) (4a)

eij(t) =
1

2
JG(t)⊗ ṡij(t) (4b)

whereJK(t) andJG(t) are the bulk creep compliance and the shear creep compliance,
respectively. Relaxation moduli and creep compliances are linked throughK̂ĴK =

ĜĴG = 1/s2 (Christensen, 1982), wheres is the Laplace variable and̂f(s) represents
the Laplace transform of the functionf(t).

By combining Eq. 1 with Eq. 3 and solving them in Laplace domainfor a uni-
axial relaxation test, the relaxation Poisson’s ratioνr is found:

ν̂r(s) =
3K̂(s)− 2Ĝ(s)

2s(3K̂(s) + Ĝ(s))
(5)

Similarly, combining Eq. 2 with Eq. 4 and solving them directly in time domain for a
uniaxial creep test, the creep Poisson’s ratioνc is found:

νc(t) =
3JG(t)− 2JK(t)

2(3JG(t) + JK(t))
(6)

The elastic-viscoelastic correspondence principle (Christensen, 1982) states
that by replacing the elastic parameters in an elastic relation by thes-multiplied Laplace
transform of the corresponding viscoelastic parameters, one can obtain the relation be-
tween viscoelastic parameters. Applying this principle tothe relation between elastic
Poisson’s ratioν0 and elastic moduliK0 andG0 yields Eq. 5, not Eq. 6. This means the
corresponding viscoelastic parameter of elastic Poisson’s ratio is the relaxation Pois-
son’s ratioνr, not the creep Poisson’s ratioνc, i.e., the elastic-viscoelastic correspon-
dence principle can be applied only to the relaxation Poisson’s ratioνr.

We introduce the uniaxial creep complianceJE(t) defined such that, in any
uniaxial test,εa(t) = JE(t) ⊗ σ̇a(t). For a uniaxial creep test, evaluating the ratio of
the Laplace transform̂εl(s) of the lateral strain over the Laplace transformε̂a(s) of the
axial strain and comparing with Eq. 2 gives:

νc(t)JE(t) = νr(t)⊗ J̇E(t) (7)

This formula, although derived by considering the specific case of a uniaxial creep test,
is in fact generic.

Comparison of the two Poisson’s ratios at initial and large times

This section is devoted to compare the two Poisson’s ratios at initial time and
large times. At initial timet = 0, the initial values of the relaxation moduli and creep
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compliances are equal to their elastic values:K(t = 0) = K0, G(t = 0) = G0,
JK(t = 0) = JK0 = K−1

0
, JG(t = 0) = JG0 = G−1

0
. By using the initial value theorem

(Auliac et al., 2000) on Eq. 5, and comparing the result with the value of Eq. 6 att = 0,
one finds that the two Poisson’s ratios are equal to the elastic Poisson’s ratioν0:

νr(0) = νc(0) =
3K0 − 2G0

6K0 + 2G0

=
3JG0 − 2JK0

6JG0 + 2JK0

= ν0 (8)

At very large times, i.e.,t → ∞, the bulk and shear relaxation moduli
tend towardK∞ andG∞, respectively. Then, by using the final value theorem, the
asymptotic values of creep compliances can be deduced:JK(t → ∞) = 1/K∞,
JG(t → ∞) = 1/G∞. By using the final value theorem on Eq. 5, and comparing
the result with the limit value of Eq. 6 att → ∞, one finds that the two Poisson’s ratios
are equal to a same asymptotic valueν∞:

νr(∞) = νc(∞) =
3K∞ − 2G∞

6K∞ + 2G∞

= ν∞ (9)

As to the derivative with respect to time, simplifying the heredity integral on
the right side of Eq. 7, then deriving Eq. 7 with respect to time and evaluating the result
at t = 0, one finds their derivatives with respect to time are equalν̇r(0) = ν̇c(0). At
large times, as the Poisson’s ratios tend toward a finite valueν∞, their derivatives with
respect to time tend towards0, i.e., ν̇r(∞) = ν̇c(∞) = 0.

In conclusion, both at initial timet = 0 and at very large timest → ∞, the
two Poisson’s ratios are equal to each other, respectively.So are their derivatives with
respect to time.

POISSON’S RATIOS IN CREEP TESTS ON CEMENTITIOUS MATERIALS

This section is devoted to compare the two Poisson’s ratios from experimental
creep test results that are available in literature (Bernardet al., 2003; Jordaan & Illson,
1969; Parrott, 1974). Only the “basic” creep is considered,which is the difference
between the strain that takes place under autogenous condition under load and the
autogenous shrinkage (Neville, 1995).

Under the assumption of linear viscoelasticity, the stress-strain relation for a
multiaxial creep test can be written using either the relaxation Poisson’s ratioνr(t) or
the creep Poisson’s ratioνc(t):

εi(t) = JE(t)σi0 − (σj0 + σk0)νr(t)⊗ J̇E(t), wherei 6= j 6= k ∈ {1, 2, 3} (10a)

εi(t) = JE(t)σi0 − (σj0 + σk0)νc(t)JE(t), wherei 6= j 6= k ∈ {1, 2, 3}. (10b)

whereσi and εi are the principal (constant) stresses and principal (time-dependent)
strains, respectively, withi = 1, 2, 3;
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Figure 1. Experimental data of multiaxial creep tests on cementitious materials
(data from (Bernard et al., 2003; Jordaan & Illson, 1969; Parrott, 1974))

One observes by comparing Eq. 10a and Eq. 10b that the creep Poisson’s ratio
νc is easier to compute from experimental results, as it does not require the calcula-
tion of a convolution integral. This explains why the creep Poisson’s ratioνc is used
more widely in the back analysis of creep experimental data than the relaxation Pois-
son’s ratioνr (Jordaan & Illson, 1969, Benboudjema, F. 2002; Torrenti, J. M. et al.,
2014; Hilaire, A. 2014). Using Eq. 10b, we compute experimental values of the creep
Poisson’s ratioνc and of the uniaxial creep complianceJE. Fitting an analytical ex-
pression to the uniaxial creep complianceJE and combining it with Eq. 7, we obtain
the Poisson’s ratios, which are compared to each other.

Figure 1 displays experimental data on concrete, cement paste and leached mor-
tar and cement paste. The Poisson’s ratio shows different trends for different tests. We
focus on the difference between the two Poisson’s ratios. The test on concrete is a bi-
axial creep test on a cubic sample (Jordaan & Illson, 1969): The two Poisson’s ratios
are almost equal during all times. The test on cement paste isa uniaxial creep test on a
cuboid cement paste (Parrott, 1974): The maximum difference between the two Pois-
son’s ratios is0.004. The tests on leached cement paste and mortar are triaxial tests
on cylindrical samples (Bernard et al., 2003): the difference between the two Poisson’s
ratios reaches0.017 and0.025 for leached cement paste and mortar, respectively. From
these curves, it is observed that the difference between thetwo Poisson’s ratios is very
small when the Poisson’s ratios vary little over time. On thecontrary, when the varia-
tion over time is large, the difference between the two Poisson’s ratios does exist but
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remains still rather small.

CONCLUSIONS

Two Poisson’s ratios are defined for non-aging linear isotropic viscoelastic ma-
terials. Several conclusions are drawn on their difference:

• The two Poisson’s ratios are material properties independent of the loading mode.
They are linked to each other through Eq. 7.

• The relaxation Poisson’s ratioνr is more convenient for solving analytically a
viscoelastic problem by means of the elastic-viscoelasticcorrespondence princi-
ple.

• The creep Poisson’s ratioνc is more favored in the back analysis of creep exper-
imental data, because it can be calculated easily.

• The initial values of the two Poisson’s ratios are equal, andso are their long-
time asymptotic values. Similarly, the initial values of derivative with respect to
time of the two Poisson’s ratios are equal, and so are their long-time asymptotic
values.

• Multiaxial creep test results show that the difference between the two Poisson’s
ratios is not significant if the Poisson’s ratio varies little over time. In contrast,
when variations over time are significant, a difference doesexist but remains still
rather small.
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