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A Path Independent Integral and the 
Approximate Analysis of Strain Concentration 
by Notches and Cracks 
A line integral is exhibited which has the same value for all paths surrounding the tip of 
a notch in the two-dimensional strain field of an elastic or deformation-type elastic-plastic 
material. Appropriate integration path choices serve both to relate the integral to the 
near tip deformations and, in many cases, to permit its direct evaluation. This averaged 
measure of the near tip field leads to approximate solutions for several strain-concentra-
tion problems. Contained perfectly plastic deformation near a crack tip is analyzed for 
the plane-strain case with the aid of the slip-line theory. Near tip stresses are shown to 
be significantly elevated by hydrostatic tension, and a strain singularity results varying 
inversely with distance from the tip in centered fan regions above and below the tip. 
Approximate estimates are given for the strain intensity, plastic zone size, and crack tip 
opening displacement, and the important role of large geometry changes in crack blunting 
is noted. A notlier application leads to a general solution for crack tip separations in 
the Barenblatt-Dugdale crack model. A proof follows on the equivalence of the 
Griffith energy balance and cohesive force theories of elastic brittle fracture, and hardening 
behavior is included in a model for plane-stress yielding. A final application leads 
to approximate estimates of strain concentrations at smooth-ended notch tips in elastic 
and elastic-plastic materials. 

Introduction 
C O N S I D E R A B L E mathematical difficulties accompany 

the determination of concentrated strain fields near notches and 
cracks, especially in nonlinear materials. An approximate 
analysis of a variety of strain-concentration problems is carried 
out here through a method which bypasses this detailed solution 
of boundary-value problems. The approach is first to identify a 
line integral which has the same value for all integration paths 
surrounding a class of notch tips in two-dimensional deformation 
fields of linear or nonlinear elastic materials. The choice of a 
near tip path directly relates the integral to the locally concen-
trated strain field. But alternate choices for the path often per-
mit a direct evaluation of the integral. This knowledge of an 
averaged value for the locally concentrated strain field is the 
starting point in the analysis of several notch and crack problems 
discussed in subsequent sections. 

All results are either approximate or exact in limiting cases. 
The approximations suffer from a lack of means for estimating 
errors or two-sided bounds, although lower bounds 011 strain 
magnitudes may sometimes be established. The primary interest 
in discussing nonlinear materials lies with elastic-plastic behavior 
in metals, particularly in relation to fracture. This behavior is 
best modeled through incremental stress-strain relations. But 
no success has been met in formulating a path integral for 
incremental plasticity analogous to that presented here for elastic 
materials. Thus a "deformation" plasticity theory is employed 
and the phrase "elastic-plastic material" when used here will be 
understood as denoting a nonlinear elastic material exhibiting a 
linear Hookean response for stress states within a yield surface 
and a nonlinear hardening response for those outside. 

Contributed by the Applied Mechanics Division and presented 
at the Applied Mechanics Conference, Providence, R. I., June 12-14, 
10(38, of T H E A M E R I C A N S O C I E T Y O F M E C H A N I C A L E N G I N E E R S . 

Discussion of this paper should be addressed to the Editorial De-
partment, ASME, United Engineering Center, 345 East 47th Street, 
New York, N. Y . 10017, and will be accepted until July 15, 1968. 
Discussion received after the closing date will be returned. Manu-
script received by A S M E Applied Mechanics Division, May 22, 1967; 
final draft, March 5, 1968. Paper No. 68—APM-31. 

Fig. 1 Flat surfaced notch in two-dimensional deforma-
tion field (all stresses depend only on x and y). P is any 
curve surrounding the notch tip; denotes the curved 
notch tip. 

Path Independent J Integral. Cons ider a h o m o g e n e o u s b o d y of 
linear or nonlinear elastic material free of body forces and sub-
jected to a two-dimensional deformation field (plane strain, gen-
eralized plane stress, antiplane strain) so that all stresses a x j de-
pend only on two Cartesian coordinates xi( = x) and x2(— y). 
Suppose the body contains a notch of the type shown in Fig. 1, 
having flat surfaces parallel to the x-axis and a rounded tip de-
noted by the arc F,. A straight crack is a limiting case. Define 
the strain-energy density TF by 

IF = TF(x, y) = JF(e) = f <rfJ.<few, (1) 
Jo 

where £ = [e ;j] is the infinitesimal strain tensor. Now consider 
the integral J defined by 

J = £ (Wdy - T-g ds). ,2) 

Here T is a curve surrounding the notch tip, the integral being 
evaluated in a contraclockwise sense starting from the lower flat 
notch surface and continuing along the path F to the upper flat 
surface. T is the traction vector defined according to the out-
ward normal along F, T{ = o'ijnj, u is the displacement vector, 
and ds is an element of arc length along P. To prove path inde-
pendent, consider any closed curve T* enclosing an area A* in a 
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two-dimensional deformation field free of body forces. An ap-
plication of Green's theorem [1]1 gives 

c f — _ — ( 

JAt L dx dxy \ " dx /_ 

Differentiating the strain-energy density, 
2>TF £>IF deti de,-,- „ . ,, 
— = — . — = o-, . — [by equation (1)] 
dx oe,-,- dx dx 

= — a 2 
d 
dx 

/ biij \ d / dUj \ 
\dx j ) dx\dXj/_ 

d (du,\ 

d ( du\ ( . do-,.- \ 
= ^ V'' d^) V s m c e ^ 7 = 0 J 

(s ince IT,-,- = <7;I 

(36) 

Wdy - T ox 

J = L Wcly (4) 

so that J" is an averaged measure of the strain on the notch tip. 
The limit is not meaningful for a sharp crack. Nevertheless, since 
an arbitrarily small curve T may then be chosen surrounding the 
tip, the integral may be made to depend only on the crack tip 
singularity in the deformation field. The utility of the method 
rests in the fact that alternate choices of integration paths often 
permit a direct evaluation of J. These are discussed in the next 
section, along with an energy-rate interpretation of the integral 
generalizing work by Irwin [2] for linear behavior. The J inte-
gral is identical in form to a static component of the "energy-
momentum tensor" introduced by Eshelby [3] to characterize 
generalized forces on dislocations and point defects in elastic 
fields. 

Evaluation of the J Integral 
Two Special Configurations. T h e J integral m a y b e eva luated 

almost by inspection for the configurations shown in Fig. 2. 
These are not of great practical interest, but are useful in il-
lustrating the relation to potential energy rates. In Fig. 2(a), a 
semi-infinite flat-surfaced notch in an infinite strip of height h, 
loads are applied by clamping the upper and lower surfaces of the 
strip so that the displacement vector u is constant on each 

1 Numbers in brackets designate References at end of paper. 

dxdy. (3a) M ' 

M J 

1 1 y 1 
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T / / / Ai' / /////////////////// 
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The area integral in equation (3a) vanishes identically, and thus 

for any closed curve T*. (3c) 

Fig. 2 Two special configurations for which the path independent inte-
gral J is readily evaluated on the dashed-l ine paths T s h o w n . Infinite 
strips with semi-infinite notches, (a) Constant displacements imposed 
by clamping boundaries, and (b) pure bending of beamlike arms. 

clamped boundary. Take P to be the dashed curve shown 
which stretches out to x = ± °°. There is no contribution to J 
from the portion of F along the clamped boundaries since dy = 0 
and du/cto = 0 there. Also at x = — IF = 0 and du/cto = 0. 
The entire contribution to J comes from the portion of F at x = 
+ co, and since du/dx = 0 there, 

J = WJi (5) 

Consider any two paths Ti and r 2 surrounding the notch tip, as 
does F in Fig. 1. Traverse Ti hi the contraclockwise sense, 
continue along the upper flat notch surface to where r 2 intersects 
the notch, traverse r 2 in the clockwise sense, and then continue 
along the lower flat notch surface to the starting point where Fi 
intersects the notch. This describes a closed contour so that the 
integral of Wdy — T- (du/dx)ds vanishes. But T = 0 and dy = 0 
on the portions of path along the flat notch surfaces. Thus the 
integral along Fi contraclockwise and the integral along F2 clock-
wise sum to zero. J has the same value when computed by in-
tegrating along either Ti or r2, and path independent is proven. 
We assume, of course, that the area between curves Fi and T2 is 
free of singularities. 

Clearly, by taking T close to the notch tip we can make the 
integral depend only on the local field. In particular, the path 
may be shrunk to the tip T, (Fig. 1) of a smooth-ended notch and 
since T = 0 there, 

where TF„ is the constant strain-energy density at x = + 00. 
Now consider the similar configuration in Fig. 2(6), with loads 

applied by couples M per unit thickness on the beamlike arms so 
a state of pure bending (all stresses vanishing except <rxx) results 
at x = — oo. For the contour T shown by the dashed line, no con-
tribution to J occurs at x = + <*> as TF and T vanish there, and 
no contribution occurs for portions of F along the upper and 
lower surfaces of the strip as dy and T vanish. Thus J is given by 
the integral across the beam arms at x = — co and on this por-
tion of F, dy = — ds, Ty = 0, and Tx = —<rxx. We end up 
integrating 

dM* T.XT TT7 <rxx — - TF = axxexx - IF = crf,6 TF 

Jo 

(6a) 

tijdo a = fi 

across the two beam arms, where U is the complementary energy 
density. Thus, letting fij(M) be the complementary energy per 
unit length of beam arm per unit thickness for a state of pure 
bending under moment per unit thickness M, 

J = 29,b(M). (66) 

Small Scale Yielding in Elastic-Plastic Materials. Cons ider a n a r r o w 
notch or crack in a body loaded so as to induce a yielded zone 
near the tip that is small in size compared to geometric dimen-
sions such as notch length, unnotched specimen width, and so on. 
The situation envisioned has been termed "small-scale yielding," 
and a boundary-layer style formulation of the problem [4] is 
profitably employed to discuss the limiting case. The essential 
ideas are illustrated with reference to Fig. 3. Loadings sym-
metrical about the narrownotcli are imagined to induce a deforma-
tion state of plane strain. First, consider the linear elastic solu-
tion of the problem when the notch is presumed to be a sharp 
crack. Employing polar coordinates r, 8 with origin at the crack 
tip, the form of stresses in the vicinity of the tip are known [2, 5] 
to exhibit a characteristic inverse square-root dependence on r: 

Ki 
, / o -W u (27rr) 

+ other terms which are bounded at the crack tip. (7a) 

Here Ki is the stress intensity factor and the set of functions 
fij(0) are the same for all symmetrically loaded crack problems. 
For an isotropic material 
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fIZ(6) = cos (0/2)[1 - sin (0/2) sin (30/2)] 

fvv(6) = cos (0/2)[ l + sin (0/2) sin (30/2)] 

Lv<fi) = 0) = sin (0/2) cos (0/2) cos (30/2). 

Ki 
(27rr)'/= U(0) 

/ = 
1 _ vi 

E 
K\ for small scale yielding, 

Ki = o-„(7ra)'/' 

and 

J = 
tt(1 - v2) 

E 
for small-scale yielding 

For plane stress, the same result holds for J with 1 — v2 replaced 
by unity. The same computation may be carried out for more 
general loadings. Letting Ki, Ku, and Km be elastic stress-in-
tensity factors [2] for the opening, in-plane sliding, and antiplane 
sliding modes, respectively, of notch tip deformation one readily 
obtains 

J 
1 

E 
(K\ + Kh) + 1 + v 

E 
Ki 

(small-scale yielding) (10) 

Fig. 3 (a) Small-scale yielding near a narrow notch or crack in an elastic-
plastic material, (b) The actual configuration is replaced by a semi-
infinite notch or crack in an infinite body; actual boundary conditions are 
replaced by the requirement of an asymptotic approach to the linear 
elastic crack tip singularity stress field. 

Interpretation in Terms of Energy Comparisons for Notches of Neighbor-
ing Size. Let A' denote the cross section and F ' the bounding 
curve of a two-dimensional elastic body. The potential energy 
per unit thickness is defined as 

= j' Wdxdy — J° I • uds, (11) 

(76) 

Now suppose the material is elastic-plastic and the load level is 
sufficiently small so that a yield zone forms near the tip which is 
small compared to notch length and similar characteristic dimen-
sions (small-scale yielding, Fig. 3(a)). One anticipates that the 
elastic singularity governs stresses at distances from the notch 
root that are large compared to yield zone and root radius dimen-
sions but still small compared to characteristic geometric dimen-
sions such as notch length. The actual configuration in Fig. 3(a) 
is then replaced by the simpler semi-infinite notch in an infinite 
body, Fig. 3(6), and a boundary-layer approach is employed re-
placing actual boundary conditions in Fig. 3(a) with the asymp-
totic boundary conditions 

where T" is that portion of T ' on which tractions T are prescribed. 
Let P(l) denote the potential energy of such a body containing a 
flat-surfaced notch as in Fig. 1 with tip at x = I. We compare 
this with the energy P(l + Ai) of an identically loaded body which 
is similar in every respect except that the notch is now at x = I 
+ A I, the shape of the curved tip T, being the same in both cases. 
Then one may show that 

J = — lim 
Al-^0 

P(l + A I) - P{1) 
AI 

bP 
'W 

(12) 

(7c) 

where K\ is the stress intensity factor from the linear elastic 
crack solution. 

Such boundary-layer solutions for cracks are mathematically 
exact in the plastic region only to the first nonvanishing term of a 
Taylor expansion of complete solutions in the applied load. But 
comparison [4] with available complete solutions indicates the 
boundary-layer approach to be a highly accurate approximation 
up to substantial fractions (typically, one half) of net section 
yielding load levels. We now evaluate the integral J from the 
boundary-layer solution, taking F to be a large circle of radius r 
in Fig. 3(6): 

[IF(r, 0) cos 0 - T(r, 0 ) - ~ (r, 0) dd. (8a) 
ox 

By path independence we may let r —* and since IF is quadratic 
in strain in the elastic region, only the asymptotically approached 
inverse square-root elastic-stress field contributes. Working out 
the associated plane-strain deformation field, one finds 

(86) 

the rate of decrease of potential energy with respect to notch size. 
The proof is lengthy and thus deferred for brevity to a section of 
a forthcoming treatise chapter [6]. Equations just mentioned 
provide a check. For loading by imposed displacements only 
as in Fig. 2(a), the potential energjr equals the strain energy so 
that equation (5) results. Similarly, the potential energy equals 
minus the complementary energy for loading by tractions only as 
in Fig. 2(6), so that equation (66) results. Equation (10) is the 
linear elastic energy-release rate given by Irwin [2], and reflects 
the fact that a small nonlinear zone at a notch tip negligibly 
affects the overall compliance of a notched body. 

In view of the energy-rate interpretation of J and its alternate 
relation to the near tip deformation field, the present work pro-
vides a generalization of the connection between crack-tip stress-
intensity factors and energy rates noted by Irwin for linear ma-
terials. Further, J. W. Hutchinson has noted in a private commu-
nication that an energy-rate line integral proposed by Sanders [7] 
for linear elasticity may be rearranged so as to coincide with the J 
integral form. The connection between energy rates and locally 
concentrated strains on a smooth-ended notch tip, as in equations 
(4) and (12), has been noted first by Thomas [8] and later by 
Rice and Drucker [9] and Bowie and Neal [10], Since subse-
quent results on strain concentrations will be given in terms of 
means for its determination in cases other than those represented 
by equations (5)-(10) are useful. The energy-rate interpretation 
is pertinent here. In particular, the compliance testing method 
of elastic fracture mechanics [2] is directly extendable through 
equation (12) to nonlinear materials. Also, highly approximate 
analyses may be employed since only overall compliance changes 
enter the determination of J. For example, the Dugdale model 

where E is Young's modulus and v Poisson's ratio. 
Primarily, we will later deal with one configuration, the narrow 

notch or crack of length 2a in a remotely uniform stress field <rra, 
Fig. 4. Here [2] 

(9) Fig. 4 Narrow notch or crack of length 2a in infinite body; 
uniform remote stress <r„ 
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discussed next or simple antiplane strain calculations [11] may 
be employed to estimate the deviation of J from its linear elastic 
value in problems dealing with large-scale plastic yielding near a 
notch. Once having determined J (approximately), the model 
may be ignored and methods of the next sections employed to 
discuss local strain concentrations. Such estimates of J are 
given in reference [6] for the two models just noted. As antici-
pated, deviations from the linear elastic value show little sensi-
tivity to the particular model employed. 

Perfectly Plastic Plane-Stra in Yielding at a Crack Tip 
As a first application we consider the plane-strain problem of 

contained plastic deformation near a crack tip in a nonhardening 
material. Behavior is idealized as linear elastic until the princi-
pal in-plane shear stress reaches a yield value TY, at which un-
restricted further deformation may occur with 110 increase in 
shear stress. This conveniently permits utilization of the slip-
line theory [12] in plastic regions. The idealization is rigorously 
correct for an isotropic nonhardening material exhibiting elastic 
as well as plastic in compressibility. Elastically compressible 
materials approach a constant in-plane shear stress in plastic 
regions when plastic strains are somewhat in excess of initial yield 
values, as anticipated in the near crack tip region. Constancy of 
the J integral requires a displacement gradient singularity at the 
crack tip since stresses are bounded and the path may be shrunk 
to zero length. Thus we construct a near tip stress state satisfy-
ing the yield condition and varying only with the polar angle 6. 

The slip lines of this field are shown in Fig. 5. Traction-free 
boundary conditions require yield in uniaxial tension along the 
crack line and the 45-deg slip lines carry this stress state into the 
isosceles right triangle A: 

2 Ty = 0 

out toward the elastic-plastic boundary (where strains must be 
small). One then anticipates strains on the order of initial yield 
values in the constant stress regions. Only the strain singularity 
in the centered fan enters the results toward which we are head-
ing. Assume elastic incompressibility for the moment, and that 
principal stress and strain directions coincide. Then e,r = ejj = 0 
in the fan and displacements are thus representable in the form 

ur = f(9), ue = -f(8) + g(r), 

where g(0) = /(TT/4) = 0 (14a) 

These equations apply to velocities [12] rather than displacements 
in a proper incremental theory. The nonvanishing strain com-
ponent in the fan is 

1 c)!( 
7r0 = -

1 due 
d9 dr 

ue 
v 

= - t /"(0) + KG) + rg'(r) - g(r)] (146) 
r 

Now consider the path independent integral J (which was 
discovered as an extension of work directed toward establishing 
the strength of the y,e singularity in this problem). Taking F as 
a circle of radius r centered at the crack tip and employing polar 
components, 

= r J " | IF cos 9 - cr„ j ^ e r r cos d - Q yr6 - w^ si 

- cre cos a — tee sin 1 

sin 6 

dd (15) 

(region A) (13a) 

Any slip line of region A finding its way to the x-axis in front of 
the crack must swing through an angle of TT/2. The accompany-
ing hydrostatic stress elevation [12] and 45-deg slip lines deter-
mine the constant stress state 

= TTTy, <ryy = (2 + 7r)7>, 
a x y = 0 (region B ) (136) 

in the diamond-shaped region ahead of the crack. A centered fan 
must join two such regions of constant stress, and in the fan 

Here co is the rotation, measured positive contraclockwise. We 
evaluate the integral by letting r —*• 0, so that only the portion 
of the integral over the centered fans contribute. The near tip 
stress state is given by equations (13). Limiting forms of strain, 
rotation, and energy density in the fan C are now given. Note 
that g'(0) exists since it is proportional to the finite extensional 
strain resulting as the tip is approached along the positive x axis, 
and is thus the limit of g(r)/r. Thus 

7rS" 
R(0) 

y Y as r 
r 

0 in C, (16a) 

26ty, 

<TrS = Ty (region C) (13c) 

This stress field is familiar in the limit analysis of double-edge 
notched thick plates [13]. I t is emphasized that the boundary 
of the slip-line field in Fig. 5 is not intended to represent the 
elastic-plastic boundary. 

Large strains can occur only when slip lines focus, as in the 
centered fans, but not in constant stress regions (A and B) unless 
strains are uniformly large along the straight slip lines and thus 

from equation (146). Here yY = Ty/G is the initial yield strain 
in shear, and the function R{6) is defined so that 

7 rR(6) =/"(0) + f(9) (166) 

Note that if g(r) was a linear function of r throughout the plastic 
zone instead of just near the tip and if the straight fan line ex-
tended to the elastic-plastic boundary, then (16a) would be an 
equality throughout the zone and R(6) would be the distance to 
the elastic-plastic boundary along a ray at angle 6. Thus we 
interpret R(9) as an approximate indication of the extent of the 
plastically strained region. The rotation co may be shown to 
approach —yrB/2 as r —> 0. The energy density appropriate to 
an incompressible nonhardening material is 

IF = fr(y)dy = ( iGY 2 if 7 < 1Y 
(17 a) 

V r 7 - iK?7Y if 7 > 7 r 

where y is the principal resolved in-plane shear strain. Thus 

R(9) 
W-*rYyY as r —>• 0 in C. (176) 

Fig. 5 Perfectly plastic plane-strain slip-line field at a crack tip; constant 
stress regions A and B joined by centered fan C 

While it was simplest to perform calculations for an incompress-
ible material, one may show that the asj'mptotic form for 7,0 in 
equation (16a) as well as all subsequent formulas in this section 
apply also to an elastically compressible material. 

The average value of R(d) is now determined in terms of J by 
letting r —»• 0 in equation (15), resulting in 

CRACK 
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J = 2r5-7y W ) 
J 7r/4 

cos 0 + + Y - 2d) sill 

(18) 

Another useful form results by solving for displacements as r —* 0 
in the fan. Converting equations (14a) to Cartesian components 
and employing equation (166), one finds 

uv Vr f R(0) sin dcld, ux yY I R(0) cos 0d0 
J ~/4 J tt/4 

as r —>• 0 in C. (19a) 

An integration by parts in equation (18) then leads to 
pZw/i 

J = 2Ty uv(0)(3 + ctn2 0)d8 (196) 
J 7r/4 

where w„(0) is the near tip vertical displacement hi the fan. 
Plastic Zone Extent and Crack Opening Displacement. W e def ine 

the "crack opening displacement" 5, as the total separation dis-
tance between upper and lower crack surfaces at the tip due to 
the strain singularity of the fan: 

8, = 2m„(3X/4). (20) 

A lower bound on 8t is established from equation (196) since m„(0) 
is monotonia by equation (19a): 

J. 3 , 4 

(3 + ctn2 0)dd 
ir/4 J 

(2 + 7T)7> 

(1 - v^ala 
(2 + TT)TyE 

, small-scale yielding 

(21) 

The latter form employs the small-scale yielding relation between 
J and the stress-intensity factor appropriate to the crack of length 
2a in a remotely uniform stress field. A similar bound is obtained 
for the maximum value Rmm of the function R(0), and thus ap-
proximately for the maximum extent of the yielded region. 
From equation (18), 

J $ 2rYyYR„ 

••• Rmax ^ 

J ' j^cos 0 + + Y - 20) sin 6 

/ 2T(1 - V) T Q-„ Y 

<ty7Y \ V2(2 + tr) \2ry) V2(2 + 7T> 

small-scale yielding^ (22) 

The path integral leads to no upper bounds on deformation 
measures, but rough approximations can be obtained by choosing 
a reasonable form for the functions R(6) or u,j{6), containing an 
unknown constant, and employing the J integral to determine 
the constant. Experience with nonhardening solutions in the 
antiplane strain case [14] suggest that, while R(6) and uu(0) 
will have a unique dependence on 0 in the small-scale yielding 
range, the 6 dependence will vary considerably with applied stress 
level and detailed specimen shape in the large-scale yielding 
range. Thus no simple approximation will be uniformly valid, 
and we here choose approximations appropriate to a small plastic 
region confined to the vicinity of the crack tip. Anticipating that 
the plastic region will then be approximately symmetrical about 
the midline of the fan, 0 = T/2, from equations (19a) and (20) 
we will have uv(0) « 5,/4 plus a function of 9 that is antisym-
metric about 8 = 7r/2. This antisymmetric term contributes 
nothing to the integral in equation (196), and 

1 
J ~ - TY8t (3 + ctn2 0)d6 

2 J,r/ 

2 J 

T/i 

27r(l - v2)a^a 
(2 + T)TY (2 + TT)TyE 

, small-scale yielding. 

Were a slip-line construction similar to Fig. 5 made in the anti-
plane strain case, a centered fan of shear lines would result ahead 
of the crack for |0| < ir/2, while constant stress regions of parallel 
shear lines would result above and below the crack line. Exact 
solutions [14] lead to an elastic-plastic boundary cutting into the 
crack along the boundaries of the fan. Thus one might assume 
a form for R(0) cutting into the crack tip along the fan boundaries 
in Fig. 5. Choosing such a form symmetric about TT/2, 

R{0) « cos [2(8 - TT/2)], 

and equation (18) leads to 

(24a) 

J ~ 2rYyYR. 

••• R„ 

•f. 

3- /4 
max J COS (28 — 7T) 

/4 

X cos 8 + + J - 2d) sin 8 

3 J 
2 s/2(2 + vr)rYyY 

37r(l - v) / (Xa 
V2(2 + tt) ^27,,/ 

(small-scale juelding). 

d0 

(246) 

The approximations made here are quite arbitrary and our 
method includes no scheme for assessing errors. Other seem-
ingly "reasonable" choices for functional forms could shift the 
approximations either way within constraints set bj ' the lower 
bounds. 

Blunting of the Crack Tip. Having just seen an analysis predicting 
no large strain concentration directly ahead of the tip of a sharp 
crack, one might wonder how cracks can propagate in materials 
for which the hydrostatic stress elevation alone is insufficient to 
cause fracture. Fig. 6 suggests an answer. The crack tip is 
progressively blunting under increasing load, and a slip-line 
pattern very different from that in Fig. 5 results over a small re-
gion comparable in size to the opening displacement 8,. The fans 
C and C" become noncentered, and their straight slip lines focus 
intense deformation into a region D directly ahead of the tip. 
The progressively blunting tip has been drawn as a semicircle in 
Fig. 6 for simplicity of illustration, and the associated exponential 
spiral slip-line field [12] extends a distance 1.9 5, ahead of the tip. 
From the foregoing approximations, 8t « 2y Y R m ^, so that the 
intense deformation region is extremel3r small and Fig. 6 is es-
sentially Fig. 5 magnified in linear dimensions by a large factor of 
order one over the initial yield strain. Since the blunted region 
is small, an effective procedure would be to perform an incremen-
tal analysis by regarding the displacement rate perpendicular to 
the boundary of region D as given by the rate of increase in the 
function ur(8), equation (14a), with 0 now interpreted as the in-
clination angle of noncentered fan lines with the x-axis. The 
motivation is that, far from the blunted region, this angle will 
coincide with the polar angle 0 , and it is known [12] that straight 
fan lines transmit a spatially constant displacement rate parallel 
to themselves. While such an analysis has not yet been carried 
out for contained plasticity, a similar analysis for a fully plastic 
problem has been carried out by Wang [15]. 

(23) 

h — 1.9 S, — 1 
Fig. 6 Crack tip blunting creates a small region D of intense deformation 
ahead of the crack. This is Fig. 5 magnif ied in linear dimensions by a 
large factor of the order of one over the initial yield strain. 
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Barenblat t -Dugdale Crack Model 
Sharp cracks lead to strain singularities. The Griffith theory 

[16] of elastic brittle fracture ignores this perhaps unrealistic 
prediction of conditions at the tip, and employs an energy balance 
to set the potential energy decrease rate due to crack extension 
equal to the energy of the newly created crack surfaces. An 
alternate approach due to Barenblatt [17] removes the singu-
larity by considering a cohesive zone ahead of the crack, postulat-
ing that the influence of atomic or molecular attractions is repre-
sentable as a restraining stress acting on the separating surfaces, 
Fig. 7(a). The restraining stress <r(8) may be viewed as a func-
tion of separation distance 5 as in Fig. 7(6). Although mathe-
matical difficulties apparently prohibited Barenblatt from de-
tailed solutions for specific restraining stress functions, we here 
take the view that a cr versus 8 curve falling off to zero is given 
so that a fracture criterion requires no special assumptions not 
inherent to the model. A mathematically similar but concep-
tually different model was proposed by Dugdale [18] to discuss 
plane-stress yielding in sheets. There the influence of yielding 
was represented approximately by envisioning a longer crack 
extending into the region with yield level stresses opposing its 
opening. For reasons that are not yet clear, some metals actually 
reveal a narrow slitlike plastic zone [19] ahead of the crack of 
height approximately equal to sheet thickness when the zone is 
long compared to the thickness dimension. Except for a perturba-
tion near the tip, yielding then consists of slip on 45-deg planes 
through the thickness so that plastic strain is essentially the 
separation distance divided by the thickness. Restraining stresses 
typical of plane-stress yielding are shown in Fig. 7(6). 

We may evaluate our integral J by employing path inde-
pendence to shrink the contour F down to the lower and upper 
surfaces of the cohesive zone as in Fig. (7)a. Then, since dy = 0 
on r, 

cr(8) 

I 

du 
T-^cte 

ox 

r&L 

Jo 

cohes zone 

a(8)d8 

cr(S) — dx 
dx 

= - f j | f * a(8)ds\ dx 
J cohes z o n e " x I J o ' 

J 
Jo 

a(8)d8 (Cohesive theory) (26a) 

On the other hand, the Griffith theory regards the total potential 
energy of a cracked body as P + 2SI, where I is crack length, S is 
surface energy, and P is the potential energy defined by the con-
tinuum mechanics solution without regard to cohesive forces. 
Determining equilibrium by setting the variation in total poten-
tial to zero, 

<>P (Griffith theory) (266) 

( a ) COHESIVE ZONE AT TIP (c ) P L A N E STRESS Y I E L D I N G 

(25) 

Fig. 7 Dugdale-Barenblatt crack model, (a) Cohesive zone at crack lip 
with restraining stress dependent on separation distance; (b) force-dis-
placement relation for atomic attraction in elastic brittle fracture; (c) for 
plane-stress plastic yielding in thin sheet. 

We conclude that the Griffith theory is identical to a theory of 
fracture based on atomic cohesive forces, regardless of the force-
attraction law, so long as the usual condition is fulfilled that the 
cohesive zone be negligible in size compared to characteristic 
dimensions (small-scale yielding). This is because the area under 
the force-separation curve is by definition twice the surface 
energy and, as we have noted, for small-scale yielding J is equal 
to the potential energy decrease rate as calculated from the usual 
continuum solution. 

This simple demonstration explains the close correspondence 
found by Goodier and Kanninen [20] between a Griffith theory 
and numerical calculations for specific nonlinear force attraction 
laws. Indeed, the discrepancies must be due to the peculiarities 
of their modeling the discrete atomic structure along the separat-
ing plane. Willis [21] has recently demonstrated the identity of 
the two theories through a detailed calculation based on complex 
variable methods in plane elasticity. His work includes a dis-
cussion of problems in interpreting the model and an extension 
to the constant velocity crack problem. 

Dugdale Model for Plane-Stress Yielding. S t r a i n - h a r d e n i n g b e -
havior is readily included in the Dugdale model; analyses to date 
have been limited to perfect plasticity. For example, with linear 
work-hardening 

a(8) = <Ty + E^ (27 a) 
h 

where h is sheet thickness, Ew a tangent modulus, and the strain 
approximated by 8/h, equation (23) gives the crack opening 
displacement as 

where 8t is the separation distance at the crack tip. Thus, if the 
crack configuration is one of many for which J is known, we are 
able to solve for the crack opening displacement directly from the 
force-displacement curve. 

Equivalence of Griffith and Cohesive Force Theories. N o w l e t US 

compare to Griffith theory of elastic brittle fracture with the 
fracture prediction from the Barenblatt-type cohesive force 
model. Letting 8* be the separation distance in Fig. 7(6) when 
the atoms at the crack tip can be considered pulled out of range of 
their neighbors, the value of J which will just cause crack ex-
tension (or, if crack extension is considered as reversible, will 
maintain equilibrium at the current crack length) is then 

t\{ • + - 1 
haY2 ) 

dyh 
1 + 27r K 

E Cr ) h. - 1 

small-scale yielding ) (276) ing^ 

In the latter form the plane-stress value of J for the crack length 
2a, appropriate for small-scale yielding, has been used. With 
negligible strain-hardening (Ew = 0) this becomes 

a Y EG Y 
small-scale yielding ielding^ (27c) 

as is obvious from equation (25). Other stress-separation dis-
tance functions are readily handled. In particular, a function 
first rising and then falling to zero might be useful for studying 
fracture by necking to zero thickness in ductile foils. 

The complete solution of the nonhardening Dugdale model for 
the configuration in Fig. 4 leads to [4] 

5, = 
8crYa 
IRE 

Rm&x — d • t e H - s t e ) ' - * 
(28) 
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for the opening displacement and length of the plastic zone. A 
Taylor development of the first of these checks equation (27c) 
at low applied stress levels. Further, since J — cTyO t we may use 
this model to estimate the deviation of J from its linear elastic 
value in the large-scale yielding range. Taking the results for 
8, and Rmax as representative of plane stress, as observations sug-
gest [18, 19] for materials in which Dugdale zones actually form, 
we may compare small-scale yielding behavior in plane stress 
with plane strain as approximated by equations (23) and (246). 
Thus, for v = 0.3, one finds a plane-strain opening displacement 
which is 61 percent of the plane-stress value for a Mises material 
(<TY = -\/3 TY) and 70 percent for a Tresca material (CRY = 2ry ) . 
The plane-strain value of Rmax is 55 percent the plane-stress value 
for a Mises material and 73 percent for a Tresca material. Any 
compensation for stress biaxiality in raising the Dugdale yield. 
stress in a Mises material above the uniaxial yield would tend to 
reduce the differences between the Mises and Tresca comparisons. 
Etching observations [22] suggest a plane-strain to plane-stress 
zone size ratio in the neighborhood of one half. 

Here the 4> notation is as in Fig. 8, emai is the extensional strain 
at the semimajor axis ($ = 0,7r), and emin at the semiminor axis 
(4> = 7T/2, 37t/2). Thus, presuming this same interpretation of 
the surface strains to be approximately valid in other cases and 
that Cmi n is small compared to em0x, 

J 
/

+*/2 

TF(emax cos2 <£>•(<£) cos (f>d<t> 
(336) 

— tt/2 

For linear elastic behavior and the narrow notch in Fig. 4 with 
a semicircular tip, r,(<£) = r, (a const), this leads to 

15tt 
— i r » v « A i 2.43tr„v a/rt (34) 

One would expect a higher number than the 2 factor for the 
narrow ellipse, although the 20 percent difference seems rather 
high. Presuming the material to behave in a perfectly plastic 
fashion once a yield stress a Y is attained on the notch surface, the 
energy density under plane-strain conditions is 

Strain Concentration at Smooth-Ended Notch Tips 
Consider a flat-surfaced notch with a smooth tip. Letting rf> 

the tangent angle at a point on the tip, as in Fig. 8, and r,(0) the 
radius of curvature, equation (4) becomes 

IF 

7 = X , m y - X 
+ * - / 2 

W[e(4>)]i',(<t>) cos 4>d(j> (29) 
t/2 

Here e(<f>) is the surface extensional strain at the point with tan-
gent angle <t>, and estimates of the maximum strain will require 
an approximate choice for the functional dependence on </>. A 
lower bound is immediate since IF[e(</>)] ^ W(emax): 

X J $ IF(e,„„) dy = 2/ilF(emax), (30) 

where 21I is the distance between the flat notch surfaces. For a 
linear elastic material 

w 1 E e t W = — ere = 
2 2(1 - v2) 

for plane strain 

£e2 
for plane stress. (31) 

Now consider a notch in the configuration in Fig. 4, which is suf-
ficiently narrow so that the sharp crack value of J is appropriate. 
Then for either plane stress or plane strain one has for the maxi-
mum concentrated stress 

^ Vnam\/aJTi. = 1.77o^^fajii, (32) 

regardless of the detailed shape of the curved notch tip. An in-
teresting unsolved problem is the determination of the optimum 
proportioning of a notch tip. The lower bound would actually be 
obtained if the surface stress were constant at every point on the 
curved tip, and the problem is to determine the shape of a tip 
leading to constant stress (if such a shape exists). 

For approximations to the strain concentration through equa-
tion (29), we recall a feature of the linear elastic problem of an 
ellipsoidal inclusion in an infinite matrix subjected to a uniform 
remote stress state. All strain components are spatially constant 
within the inclusion [23]. The same result applies to an ellip-
soidal void, in that surface displacements are compatible with 
the homogeneous deformation of an imagined inclusion having 
zero elastic moduli. Thus, for an elliptical hole in a linear elastic 
plate, loaded symmetrically so as to cause no shear or rotation of 
the imagined inclusion, surface strains are given through the 
usual tensor transformation as 

e(4>) = 6max cos2 <j> + £min sin2 (fl. (33 a) 

- — CyEy f o r e > eY = (1 - V*)<Ty/E. ( 35o ) 

By equation (336), 

\ ey J \ema J \ er ) 
15 J 

80-i-ej.r, 
(356) 

whenever the maximum strain thus computed exceeds the initial 
yield e r . The left side may be developed in a series and if we 
neglect all terms which approach zero when eman/tY becomes 
large, 

small-scale yielding^ (35c) 

This result differs negligibly from equation (356) when €,„,* is 
greater than 3eY. The lower bound of equation (30) leads to a 
formula identical to equation (35c), except that the factor 3/t is 
replaced by l /2 . A power law relation cr = uY (t /eY )N between 
surface stress and strain beyond the elastic limit leads to 

"(TV + 1/2){N + 3/2)I\Ar + 1/2) J 
r ( i / 2 ) r ( i V + i ) 

1/(1+.Y) 

(36) 

Here T(. . .) is the gamma function and terms of order tY have 
been omitted for convenience in calculation. 

As noted earlier, the approximations made are more or less 
arbitrary, and no guide is available for improving results. Results 
in this section are somewhat reminiscent of Neuber's discovery 
[24] that the product of maximum concentrated stress and strain 
are independent of the plastic region stress-strain relation for 
antiplane deformation. The author [4] later pointed out that 
this result is limited to small-scale yielding, and applies only to 
notches generated by stress trajectories of the sharp crack solu-
tion (and thus to a different notch shape for each different 
material). Since J is independent of the plastic region stress-
strain relation for small-scale yielding, our present results 
show that the averaged energy density then does not depend on 
the particular stress-strain relation. 

Fig. 8 Coordinates employed in description of notch 
surface; 0 is tangent angle and rt{cf>) is radius of curvature 
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